metal deposition
Recently Published Documents


TOTAL DOCUMENTS

1979
(FIVE YEARS 509)

H-INDEX

73
(FIVE YEARS 12)

2022 ◽  
Vol 149 ◽  
pp. 106817
Author(s):  
Simone Donadello ◽  
Valentina Furlan ◽  
Ali Gökhan Demir ◽  
Barbara Previtali

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 494
Author(s):  
Erin McGowan ◽  
Vidita Gawade ◽  
Weihong (Grace) Guo

Physics-informed machine learning is emerging through vast methodologies and in various applications. This paper discovers physics-based custom loss functions as an implementable solution to additive manufacturing (AM). Specifically, laser metal deposition (LMD) is an AM process where a laser beam melts deposited powder, and the dissolved particles fuse to produce metal components. Porosity, or small cavities that form in this printed structure, is generally considered one of the most destructive defects in metal AM. Traditionally, computer tomography scans measure porosity. While this is useful for understanding the nature of pore formation and its characteristics, purely physics-driven models lack real-time prediction ability. Meanwhile, a purely deep learning approach to porosity prediction leaves valuable physics knowledge behind. In this paper, a hybrid model that uses both empirical and simulated LMD data is created to show how various physics-informed loss functions impact the accuracy, precision, and recall of a baseline deep learning model for porosity prediction. In particular, some versions of the physics-informed model can improve the precision of the baseline deep learning-only model (albeit at the expense of overall accuracy).


2022 ◽  
Author(s):  
A.V. Balyakin

Abstract. The article discusses the influence of technological modes of the DMD method on the macro- and microstructure of a heat-resistant nickel-based alloy to use this technology for heat-resistant materials in the manufacture of parts for combustion chambers in gas turbine plants.


2022 ◽  
Author(s):  
M.A. Oleynik

Abstract. The paper considers the issue of optimizing the movement of an industrial robot used in additive manufacturing in the technology of direct metal deposition of parts. The developed mathematical model that takes into account the joint work of a six-axis robot manipulator and a two-axis positioner is described. The algorithm for calculating the motion based on the relative position of two adjacent points of the working tool trajectory relative to the rotary axis of the positioner with a given accuracy is described. The simulation of processing is carried out both when working only with the manipulator, and when working together with a two-axis positioner, and control programs with recalculated coordinates and rotation angles of the positioner are obtained.


Author(s):  
Chongliang Zhong ◽  
Venkatesh Pandian Narayana Samy ◽  
Norbert Pirch ◽  
Andres Gasser ◽  
Gandham Phanikumar ◽  
...  

Author(s):  
Siri Marthe Arbo ◽  
Stanka Tomovic-Petrovic ◽  
Jo Aunemo ◽  
Nora Dahle ◽  
Ola Jensrud

Sign in / Sign up

Export Citation Format

Share Document