The Pair Correlation Function of the Liquid-Vapour Interface: A Monte Carlo Calculation

1979 ◽  
Vol 34 (10) ◽  
pp. 1236-1238
Author(s):  
B. Borštnik ◽  
A. Ažman

Abstract A Monte Carlo simulation of the liquid-vapour interface near the triple point is reported. A monotonic density profile is obtained. In the entire interface the pair correlation function g(r) was found to be very close to the liquid bulk g(r), except for the low density region (ϱ(z)/(ϱliq ≦ 0.25 ) where information was inaccessible. The behaviour of the solution of the BGYB equation for the density profile is explored in the context of the new information concerning the pair correlation function in the interface.

1981 ◽  
Vol 43 (6) ◽  
pp. 1471-1475 ◽  
Author(s):  
Peter Cummings ◽  
Ivo Nezbeda ◽  
William R. Smith ◽  
Gary Morriss

1968 ◽  
Vol 46 (7) ◽  
pp. 879-888 ◽  
Author(s):  
M. S. Miller ◽  
J. D. Poll

A quantum-mechanical calculation of the pair correlation function for hard spheres in the low-density limit has been made. This calculation is, therefore, valid at low temperatures, where quantum-mechanical diffraction and symmetry effects are important. Results are given for various temperatures and hard-sphere diameters. The pair correlation function is presented in the form g = gB + gS, where gB is the correlation function for Boltzmann particles and gS describes the symmetry effects. It is found that gS(R) for any value of the separation R is always smaller than the corresponding value for free particles.


2010 ◽  
Vol 24 (25n26) ◽  
pp. 4946-4960
Author(s):  
DAVID NEILSON

A glassy phase in disordered two dimensional (2D) electron systems may exist at low temperatures for electron densities lying intermediate between the Fermi liquid and Wigner crystal limits. The glassy phase is generated by the combined effects of disorder and the strong electron-electron correlations arising from the repulsive Coulomb interactions. Our approach here is motivated by the observation that at low electron densities the electron pair correlation function, as numerically determined for a non-disordered 2D system from Monte Carlo simulations, is very similar to the pair correlation function for a 2D classical system of hard discs. This suggests that theoretical approaches to 2D classical systems of hard discs may be of use in studying the disordered, low density electron problem. We use this picture to study its dynamics on the electron-liquid side of a glass transition. At long times the major relaxation process in the electron-liquid will be a rearrangement of increasingly large groups of the discs, rather than the movement of the discs separately. Such systems have been studied numerically and they display all the characteristics of glassy behaviour. There is a slowing down of the dynamics and a limiting value of the retarded spatial correlations. Motivated by the success of mode-coupling theories for hard spheres and discs in reproducing experimental results in classical fluids, we use the Mori formalism within a mode-coupling theory to obtain semi-quantitative insight into the role of electron correlations as they affect the time response of the weakly disordered 2D electron system at low densities.


Sign in / Sign up

Export Citation Format

Share Document