Assessment of Genetic Diversity in 31 Species of Mangroves and their Associates through RAPD and AFLP Markers

2006 ◽  
Vol 61 (5-6) ◽  
pp. 413-420 ◽  
Author(s):  
Arup Kumar Mukherjee ◽  
Laxmikanta Acharya ◽  
Pratap Chandra Panda ◽  
Trilochan Mohapatra

Random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers were used to assess the genetic diversity in 31 species of mangroves and mangrove associates. Four AFLP primer combinations resulted in the amplification of 840 bands with an average of 210 bands per primer combination and 11 RAPD primers yielded 319 bands with an average of 29 bands per primer. The percentage of polymorphism detected was too high indicating the high degree of genetic variability in mangrove taxa both at inter- and intra-generic levels. In the dendrogram, species belonging to a particular family/ genus, taxa inhabiting similar habitats or having similar adaptations tended to be together. There were exceptions too; as many unrelated species of mangroves form clusters. The intrafamilial classification and inter-relationships of genera in the family Rhizophoraceae could be confirmed by molecular analysis. Both the markers RAPD and AFLP were found equally informative and useful for a better understanding of the genetic variability and genome relationships among mangroves and their associated species.

Genome ◽  
2000 ◽  
Vol 43 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Vera Saliba-Colombani ◽  
Mathilde Causse ◽  
Laurent Gervais ◽  
Jacqueline Philouze

We have constructed a tomato genetic linkage map based on an intraspecific cross between two inbred lines of Lycopersicon esculentum and L. esculentum var. cerasiforme. The segregating population was composed of 153 recombinant inbred lines. This map is comprised of one morphological, 132 RFLP (restriction fragment length polymorphism, including 16 known-function genes), 33 RAPD (random amplified polymorphic DNA), and 211 AFLP (amplified fragment length polymorphism) loci. We compared the 3 types of markers for their polymorphism, segregation, and distribution over the genome. RFLP, RAPD, and AFLP methods revealed 8.7%, 15.8%, and 14.5% informative bands, respectively. This corresponded to polymorphism in 30% of RFLP probes, 32% of RAPD primers, and 100% of AFLP primer combinations. Less deviation from the 1:1 expected ratio was obtained with RFLP than with AFLP loci (8% and 18%, respectively). RAPD and AFLP markers were not randomly distributed over the genome. Most of them (60% and 80%, respectively) were grouped in clusters located around putative centromeric regions. This intraspecific map spans 965 cM with an average distance of 8.3 cM between markers (of the framework map). It was compared to other published interspecific maps of tomato. Despite the intraspecific origin of this map, it did not show any increase in length when compared to the high-density interspecific map of tomato. Key words: Lycopersicon esculentum, molecular linkage map, RFLP, AFLP, intraspecific cross.


2004 ◽  
Vol 59 (7-8) ◽  
pp. 572-578 ◽  
Author(s):  
Arup Kumar Mukherjee ◽  
Laxmikanta Acharya ◽  
Pratap Chandra Panda ◽  
Trilochan Mohapatra ◽  
Premananda Das

AbstractRandom amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers were used to study the genomic relationship among 11 members of Indian Rhizophoraceae represented by nine true mangroves and two non-mangrove species. The AFLP and RAPD bands were scored and analyzed for genetic similarities and cluster analysis was done which separated the 11 species studied into two main groups, the true mangroves and the non-mangroves. The polymorphism observed for these markers showed a high degree of genetic diversity among the constituent taxa of the family. The phylogenetic relationship inferred from molecular marker systems supported the traditional taxonomic classification of the family Rhizophoraceae based on morphological characters at the levels of tribe, phylogeny and delimitation of genera and species, except the intra-generic classification of the genus Bruguiera and the placement of Rhizophora in the family Rhizophoraceae.


Sign in / Sign up

Export Citation Format

Share Document