Test Method for Distribution Coefficients of Inorganic Species by Batch Method

2021 ◽  
Author(s):  
Kerntechnik ◽  
2021 ◽  
Vol 86 (5) ◽  
pp. 375-381
Author(s):  
C.-P. Lee ◽  
Y. Hu ◽  
Y. Sun ◽  
Y. Shi ◽  
N.-C. Tien ◽  
...  

Abstract Buffer/backfill materials for radioactive waste disposal sites consist of pure bentonite or bentonite-rock mixtures. In this study, the batch test method was used to obtain the sorption characteristics of important radionuclides such as Cs, Sr and Co on buffer/backfill materials; i. e., mixing Wyoming MX-80 bentonite or local Taiwanese Zhi-Shin bentonite with possible host rock (argillite and granite) in different proportions (0∼100%). The distribution coefficients (Kd) for Cs, Sr and Co were obtained from the experiments. The distribution coefficient for the bentonite-rock mixtures were found, with more than 50% of mixing proportion of bentonite to argillite or granite, to have very similar values to that of pure bentonite. Furthermore, it was clearly found that the sorption of Cs, Sr and Co to bentonite-rock mixtures is decreased as ionic strength of the liquid phase is increased from 0.001M to 1M for NaCl solutions. According to the experimental results, in synthetic groundwater, it is quite convenient and helpful to assess the distribution coefficients (Kd) of Cs, Sr and Co for buffer/backfill materials using batch sorption experiments with bentonite-rock mixtures of fixed mixing proportions.


Author(s):  
Saeed Ahmad ◽  
Elizabeth H. Bailey ◽  
Muhammad Arshad ◽  
Sher Ahmed ◽  
Michael J. Watts ◽  
...  

AbstractDeficiencies of the micronutrients iodine and selenium are particularly prevalent where populations consume local agricultural produce grown on soils with low iodine and selenium availability. This study focussed on such an area, Gilgit-Baltistan in Pakistan, through a geochemical survey of iodine and selenium fractionation and speciation in irrigation water and arable soil. Iodine and selenium concentrations in water ranged from 0.01–1.79 µg L−1 to 0.016–2.09 µg L−1, respectively, which are smaller than levels reported in similar mountainous areas in other parts of the world. Iodate and selenate were the dominant inorganic species in all water samples. Average concentrations of iodine and selenium in soil were 685 µg kg−1 and 209 µg kg−1, respectively, much lower than global averages of 2600 and 400 µg kg−1, respectively. The ‘reactive’ fractions (‘soluble’ and ‘adsorbed’) of iodine and selenium accounted for < 7% and < 5% of their total concentrations in soil. More than 90% of reactive iodine was organic; iodide was the main inorganic species. By contrast, 66.9 and 39.7% of ‘soluble’ and ‘adsorbed’ selenium, respectively, were present as organic species; inorganic selenium was mainly selenite. Very low distribution coefficients (kd = adsorbed/soluble; L kg−1) for iodine (1.07) and selenium (1.27) suggested minimal buffering of available iodine and selenium against leaching losses and plant uptake. These geochemical characteristics suggest low availability of iodine and selenium in Gilgit-Baltistan, which may be reflected in locally grown crops. However, further investigation is required to ascertain the status of iodine and selenium in the Gilgit-Baltistan food supply and population.


Sign in / Sign up

Export Citation Format

Share Document