Test Methods for Pressure Decay Leak Test for Flexible Packages With and Without Restraining Plates

2021 ◽  
Author(s):  
Author(s):  
Heather A. Oravec ◽  
Christopher C. Daniels ◽  
Janice L. Mather

As deep space exploration continues to be the goal of NASA’s human spaceflight program, verification of the performance of spaceflight hardware becomes increasingly critical. Suitable test methods for verifying the leak rate of sealing systems are identified in program qualification testing requirements. One acceptable method for verifying the air leak rate of gas pressure seals is the tracer gas leak detector method. In this method, a tracer gas (commonly helium) leaks past the test seal and is transported to the leak detector where the leak rate is quantified. To predict the air leak rate, a conversion factor of helium-to-air is applied depending on the magnitude of the helium flow rate. The conversion factor is based on either the molecular mass ratio or the ratio of the dynamic viscosities. The current work was aimed at validating this approach for permeation-level leak rates using a series of tests with a silicone elastomer O-ring. An established pressure decay method with constant differential pressure was used to evaluate both the air and helium leak rates of the O-ring under similar temperature and pressure conditions. The results from the pressure decay tests showed, for the elastomer O-ring, that neither the molecular flow nor the viscous flow helium-to-air conversion factors were applicable. Leak rate tests were also performed using nitrogen and argon as the test gas. Molecular mass and viscosity based helium-to-test gas conversion factors were applied, but did not correctly predict the measured leak rates of either gas. To further this study, the effect of pressure boundary conditions was investigated. Often, pressure decay leak rate tests are performed at a differential pressure of 101.3 kPa with atmospheric pressure on the downstream side of the test seal. In space applications, the differential pressure is similar, but with vacuum as the downstream pressure. The same O-ring was tested at four unique differential pressures ranging from 34.5 to 137.9 kPa. Up to six combinations of upstream and downstream pressures for each differential pressure were compared. For a given differential pressure, the various combinations of upstream and downstream dry air pressures did not significantly affect the leak rate. As expected, the leak rate of the O-ring increased with increasing differential pressure. The results suggested that the current leak test pressure conditions, used to verify spacecraft sealing systems with elastomer seals, produce accurate values even though the boundary conditions do not model the space application.


Author(s):  
S. Ulutaş ◽  
M. Wichern ◽  
B. Bosseler

Abstract Tests to determine the tightness of wastewater pipes can in some cases produce results that are worthy of discussion. Therefore, testing procedures for real-scale sewage pipes used for house connections were evaluated and data was statistically analyzed. The results of the investigation showed that leaky pipes are detected with a very high degree of reliability by all leak test methods. The test methods are also robust against errors by expert testers and deviations from the test specifications. In contrast, tight pipelines can also be incorrectly classified as ‘leaking’ (test failed) to a significant extent during leak tests. Even for the more reliable test methods, i.e. air overpressure, air underpressure and water with low test pressure, a tight pipe is incorrectly classified as leaking (false positive) in one out of ten cases (10%). The highest false positive rate was 20% for water with high test pressure. In addition to the leak test methods, the quality of the visual inspection was also analysed. Here it was found that visual inspection is not sufficiently reliable for determining the tightness of pipelines above the groundwater level. Error rates of approximately. 50% were found for the detection of tight and leaky pipelines.


Sign in / Sign up

Export Citation Format

Share Document