tracer gas
Recently Published Documents


TOTAL DOCUMENTS

540
(FIVE YEARS 78)

H-INDEX

28
(FIVE YEARS 5)

2022 ◽  
Vol 54 (1) ◽  
pp. 015502
Author(s):  
W A McMullan

Abstract This paper assesses the prediction of inert tracer gas dispersion within a cavity of height (H) 1.0 m, and unity aspect ratio, using large Eddy simulation (LES). The flow Reynolds number was 67 000, based on the freestream velocity and cavity height. The flow upstream of the cavity was laminar, producing a cavity shear layer which underwent a transition to turbulence over the cavity. Three distinct meshes are used, with grid spacings of H / 100 (coarse), H / 200 (intermediate), and H / 400 (fine) respectively. The Smagorinsky, WALE, and Germano-Lilly subgrid-scale models are used on each grid to quantify the effects of subgrid-scale modelling on the simulated flow. Coarsening the grid led to small changes in the predicted velocity field, and to substantial over-prediction of the tracer gas concentration statistics. Quantitative metric analysis of the tracer gas statistics showed that the coarse grid simulations yielded results outside of acceptable tolerances, while the intermediate and fine grids produced acceptable output. Interrogation of the fluid dynamics present in each simulation showed that the evolution of the cavity shear layer is heavily influenced by the grid and subgrid scale model. On the coarse and intermediate grids the development of the shear layer is delayed, inhibiting the entrainment and mixing of the tracer gas into the shear layer, reducing the removal of the tracer gas from the cavity. On the fine grid, the shear layer developed more rapidly, resulting in enhanced removal of the tracer gas from the cavity. Concentration probability density functions showed that the fine grid simulations accurately predicted the range, and the most probable value, of the tracer gas concentration towards both walls of the cavity. The results presented in this paper show that the WALE and Germano-Lilly models may be advantageous over the standard Smagorinsky model for simulations of pollutant dispersion in the urban environment.


2022 ◽  
Author(s):  
Dongjie Hu ◽  
Zongxiang Li

Abstract To ensure that the gas concentration at the top corner does not exceed the limit, a reasonable level of the high drainage roadway layout in Jiaojiazhai Mine should be determined. In this work, based on the actual conditions of the working face, an SF6 tracer gas was used to test the connectivity between the high drainage roadway and the working face. A discrete element analysis program was used to simulate the deformation law of the overlying strata in the goaf, and a corresponding caving control program for the surrounding rock was written based on the obtained parameters and “O” ring theory. A fluid simulation software was used to simulate and analyze five goaf models with different high drainage roadway layouts (10, 15, 20, 25, and 30 m). The gas drainage data for two layers (10 m and 20 m) of the high drainage roadway were measured. The results showed that the height of the caving zone in the goaf is approximately 20 m, and when the high drainage roadway is arranged along the roof (when the layout layer height is 10 m), the roadway will be directly connected to the working face, thus pumping fresh air to the working face. The gas extraction effect of the 20 m stratum was better than those of the other strata. The simulation results of the gas extraction were consistent with the measured data. The proposed scheme was practically applied, and its effect was found to be evident, thus solving the problem of high gas concentration at the top corner and increasing the mine output.


2021 ◽  
Author(s):  
Bea Vuylsteke ◽  
Lize Cuypers ◽  
Guy Baele ◽  
Marianne Stranger ◽  
Sarah Lima Paralovo ◽  
...  

Abstract Objectives: To better understand the conditions which have led to one of the largest COVID-19 outbreaks in Belgian nursing homes in 2020. Setting: A nursing home in Flanders, Belgium, which experienced a massive outbreak of COVID-19 after a cultural event. An external volunteer who dressed as a legendary figure visited consecutively the 4 living units and tested positive for SARS-CoV-2 the next day. Within days, residents started to display symptoms and the outbreak spread rapidly within the nursing home. Methods: We interviewed key informants and collected standardized data from all residents retrospectively. A batch of 115 positive samples with a Ct value of <37 by qRT-PCR were analysed using whole-genome sequencing. Six months after the outbreak, ventilation assessment of gathering rooms in the nursing home was done using a tracer gas test with calibrated CO2 sensors. Results: Timeline of diagnoses and symptom onsets clearly pointed to the cultural event as the start of the outbreak, with the volunteer as index case. The genotyping of positive samples depicted the presence of one large cluster, suggesting a single source outbreak. The global attack rate among residents was 77% with a significant association between infection and presence at the event. Known risk factors such as short distance to or physical contact with the volunteer, and wearing of a mask during the event were not associated with early infection. The ventilation assessment showed a high background average CO2 level in four main rooms varying from 657 ppm to 846 ppm. Conclusions: Our investigation shows a rapid and widespread single source outbreak of SARS-CoV-2 in a nursing home, in which airborne transmission was the most plausible explanation for the massive intra-facility spread. Our results underscore the importance of ventilation and air quality for the prevention of future outbreaks in closed facilities.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 331
Author(s):  
María D. Maeso-García ◽  
Francesc A. Esteve-Turrillas ◽  
Jorge Verdú-Andrés

The importance of ventilation in closed workplaces increased after the onset of the COVID-19 pandemic. New methodologies for measuring the number of air changes per hour (ACH) in a premise where natural ventilation is applied are necessary. It is demonstrated how the ionic photoionization detector (PID) can be employed for tracer gas decay methodology using a volatile organic solvent (acetone). The methodology applied to calculate ACH in a naturally ventilated room, with various combinations of door and window openings, provides ACH values of between 2 and 17 h−1. Two classrooms were studied to verify if the minimum ventilation requirements recommended by official guidelines were met. The values for ACH on different days varied, mainly between 15 and 35 h−1, with some exceptional values higher than 40 h−1 on very windy days. These results agree with the quality air data recorded by the installed CO2 sensors, ensuring adequate hygienic conditions for the users of the rooms. The fast response of the PID allows the measurement of different locations in the room during the same assay, which provides additional information regarding the air distribution inside during the ventilation process. This methodology is fast and easy, and the necessary equipment is simple to obtain and use routinely, whether it is needed to measure several rooms or to monitor one room periodically.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ben M. Roberts ◽  
David Allinson ◽  
Kevin J. Lomas

PurposeAccurate values for infiltration rate are important to reliably estimate heat losses from buildings. Infiltration rate is rarely measured directly, and instead is usually estimated using algorithms or data from fan pressurisation tests. However, there is growing evidence that the commonly used methods for estimating infiltration rate are inaccurate in UK dwellings. Furthermore, most prior research was conducted during the winter season or relies on single measurements in each dwelling. Infiltration rates also affect the likelihood and severity of summertime overheating. The purpose of this work is to measure infiltration rates in summer, to compare this to different infiltration estimation methods, and to quantify the differences.Design/methodology/approachFifteen whole house tracer gas tests were undertaken in the same test house during spring and summer to measure the whole building infiltration rate. Eleven infiltration estimation methods were used to predict infiltration rate, and these were compared to the measured values. Most, but not all, infiltration estimation methods relied on data from fan pressurisation (blower door) tests. A further four tracer gas tests were also done with trickle vents open to allow for comment on indoor air quality, but not compared to infiltration estimation methods.FindingsThe eleven estimation methods predicted infiltration rates between 64 and 208% higher than measured. The ASHRAE Enhanced derived infiltration rate (0.41 ach) was closest to the measured value of 0.25 ach, but still significantly different. The infiltration rate predicted by the “divide-by-20” rule of thumb, which is commonly used in the UK, was second furthest from the measured value at 0.73 ach. Indoor air quality is likely to be unsatisfactory in summer when windows are closed, even if trickle vents are open.Practical implicationsThe findings have implications for those using dynamic thermal modelling to predict summertime overheating who, in the absence of a directly measured value for infiltration rate (i.e. by tracer gas), currently commonly use infiltration estimation methods such as the “divide-by-20” rule. Therefore, infiltration may be overestimated resulting in overheating risk and indoor air quality being incorrectly predicted.Originality/valueDirect measurement of air infiltration rate is rare, especially multiple tests in a single home. Past measurements have invariably focused on the winter heating season. This work is original in that the tracer gas technique used to measure infiltration rate many times in a single dwelling during the summer. This work is also original in that it quantifies both the infiltration rate and its variability, and compares these to values produced by eleven infiltration estimation methods.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jessica Few ◽  
Clifford A. Elwell

PurposeVentilation is driven by weather conditions, occupant actions and mechanical ventilation, and so can be highly variable. This paper reports on the development of two analysis algorithms designed to facilitate investigation of ventilation in occupied homes over time.Design/methodology/approachThese algorithms facilitate application of the CO2 concentration decay tracer gas technique. The first algorithm identifies occupied periods. The second identifies periods of decaying CO2 concentration which can be assumed to meet the assumptions required for analysis.FindingsThe algorithms were successfully applied in four occupied dwellings, giving over 100 ventilation measurements during a six-month period for three flats. The specific implementation of the decay identification algorithm had important ramifications for the ventilation rates measured, highlighting the importance of interrogating the way that appropriate periods for analysis are identified.Practical implicationsThe analysis algorithms provide robust, reliable and repeatable identification of CO2 decay periods appropriate for ventilation rate analysis. The algorithms were coded in Python, and these have been made available via GitHub. As well as supporting future CO2 tracer gas experiments, the algorithms could be adapted to different purposes, including the use of other tracer gases or exploring occupant exposure to indoor air pollution.Originality/valueEmpirical investigations of ventilation in occupied dwellings rarely aim to investigate the variability of ventilation. This paper reports on analysis methods which can be used to address this gap in the empirical evidence.


2021 ◽  
pp. 1-35
Author(s):  
Giulia Babazzi ◽  
Tommaso Bacci ◽  
Alessio Picchi ◽  
Tommaso Fodelli ◽  
Tommaso Lenzi ◽  
...  

Abstract Modern gas turbines present important temperature distortions in the core-engine flowpath, mainly in the form of hot and cold streaks. As they highly influence turbines performance and lifetime, the precise knowledge of the thermal field evolution through the combustor and the high-pressure turbine is fundamental. The majority of past studies investigated streaks migrations directly examining the thermal field, while a limited amount of experimental work employed approaches based on the detection of tracer gases. The latter approach provides a more detailed evaluation of the evolution and mixing of the different flows. However, the slow time response due to the employment of sampling probes and gas analysers make the investigation extremely time consuming. In this study a commercial oxygen sensor element and its excitation/detection unit were integrated into a newly developed probe to carry out local tracer gas concentration measurements exploiting the fluorescence behaviour. The paper summarizes the probe development and calibration activities, with the characterization of its accuracy for different flow conditions. Finally, two probe applications are described: firstly the probe was used to detect tracer gas concentrations on a jet flow; afterwards it was traversed on the interface plane between a non-reactive, lean combustor simulator and the NGV cascade. The probe has proven to provide accurate and reliable measurements both from a quantitative and qualitative point of view even in highly 3D flow fields typical of gas turbines conditions.


2021 ◽  
pp. 146808742110366
Author(s):  
Fukang Ma ◽  
Wei Yang ◽  
Yifang Wang ◽  
Junfeng Xu ◽  
Yufeng Li

The scavenging process of two stroke engine includes free exhaust, scavenging, and post intake process, which clears the burned gas in cylinder and suctions the fresh air for next cycle. The gas exchange process of Opposed-Piston Two-Stroke (OP2S) engine with gasoline direct injection (GDI) engine is a uniflow scavenging method between intake port and exhaust port. In order to investigate the characteristics of the gas exchange process in OP2S-GDI engine, a specific tracer gas method (TGM) was developed and the experiments were carried out to analyze the gas exchange performance under different intake and exhaust conditions and opposed-piston movement rule. The results show that gas exchange performance and trapped gas mass are significantly influenced by intake pressure and exhaust pressure. And it has a positive effect on the scavenging efficiency and the trapped air mass. Scavenging efficiency and trapped air mass are almost independent of pressure drop when the delivery ratio exceeds 1.4. Consequently, the delivery ratio ranges from 0.5 to 1.4 is chosen to achieve an optimization of steady running and minimum pump loss. The opposed piston motion phase difference only affects the scavenging timing. Scavenging performance is mainly influenced by scavenging timing and scavenging duration. With the increased phase difference of piston motion, the scavenging efficiency and delivery ratio increased gradually, the trapping efficiency would increase first and decrease then and reaches its maximum at 14°CA.


Sign in / Sign up

Export Citation Format

Share Document