scholarly journals Sex Differences in Maturation and Attrition of Adult Neurogenesis in the Hippocampus

eNeuro ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. ENEURO.0468-19.2020 ◽  
Author(s):  
Shunya Yagi ◽  
Jared E.J. Splinter ◽  
Daria Tai ◽  
Sarah Wong ◽  
Yanhua Wen ◽  
...  
2019 ◽  
Author(s):  
Shunya Yagi ◽  
Jared E.J. Splinter ◽  
Daria Tai ◽  
Sarah Wong ◽  
Yanhua Wen ◽  
...  

ABSTRACTSex differences exist in the regulation of adult neurogenesis in the hippocampus in response to hormones and cognitive training. Here we investigated the trajectory and maturation rate of adult-born neurons in the dentate gyrus (DG) of male and female rats. Sprague-Dawley rats were perfused two hours, 24 hours, one, two or three weeks after BrdU injection, a DNA synthesis marker that labels dividing progenitor cells and their progeny. Adult-born neurons (BrdU/NeuN-ir) matured faster in males compared to females. Males had a greater density of neural stem cells (Sox2-ir) in the dorsal, but not in the ventral, DG and had higher levels of cell proliferation (Ki67-ir) than non-proestrous females. However, males showed a greater reduction in neurogenesis between one and two weeks after mitosis, whereas females showed similar levels of neurogenesis throughout the weeks. The faster maturation and greater attrition of new neurons in males compared to females suggests greater potential for neurogenesis to respond to external stimuli in males and emphasizes the importance of studying sex on adult hippocampal neurogenesis.Significance StatementPreviously studies examining the characteristics of adult-born neurons in the dentate gyrus have used almost exclusively male subjects. Researchers have assumed the two sexes have a similar maturation and attrition of new neurons in the dentate gyrus of adults. However, this study highlights notable sex differences in the attrition, maturation rate and potential of neurogenesis in the adult hippocampus that has significant implications for the field of neuroplasticity. These findings are important in understanding the relevance of sex differences in the regulation of neurogenesis in the hippocampus in response to stimuli or experience and may have consequences for our understanding of diseases that involve neurodegeneration of the hippocampus, particularly those that involve sex differences, such as Alzheimer’s disease and depression.


2020 ◽  
Author(s):  
Erin E. Hecht ◽  
Olivia T. Reilly ◽  
Marcela Benítez ◽  
Kimberley A. Phillips ◽  
Sarah Brosnan

1973 ◽  
Vol 16 (3) ◽  
pp. 482-487 ◽  
Author(s):  
June D. Knafle

One hundred and eighty-nine kindergarten children were given a CVCC rhyming test which included four slightly different types of auditory differentiation. They obtained a greater number of correct scores on categories that provided maximum contrasts of final consonant sounds than they did on categories that provided less than maximum contrasts of final consonant sounds. For both sexes, significant differences were found between the categories; although the sex differences were not significant, girls made more correct rhyming responses than boys on the most difficult category.


Sign in / Sign up

Export Citation Format

Share Document