scholarly journals Synaptic Contributions to Receptive Field Structure and Response Properties in the Rodent Lateral Geniculate Nucleus of the Thalamus

2016 ◽  
Vol 36 (43) ◽  
pp. 10949-10963 ◽  
Author(s):  
V. Suresh ◽  
U. M. Ciftcio lu ◽  
X. Wang ◽  
B. M. Lala ◽  
K. R. Ding ◽  
...  
2003 ◽  
Vol 553 (2) ◽  
pp. 601-610 ◽  
Author(s):  
Casto Rivadulla ◽  
Luis Martinez ◽  
Kenneth L. Grieve ◽  
Javier Cudeiro

1997 ◽  
Vol 78 (2) ◽  
pp. 1045-1061 ◽  
Author(s):  
Daqing Cai ◽  
Gregory C. Deangelis ◽  
Ralph D. Freeman

Cai, Daqing, Gregory C. DeAngelis, and Ralph D. Freeman. Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J. Neurophysiol. 78: 1045–1061, 1997. We have studied the spatiotemporal receptive-field organization of 144 neurons recorded from the dorsal lateral geniculate nucleus (dLGN) of adult cats and kittens at 4 and 8 wk postnatal. Receptive-field profiles were obtained with the use of a reverse correlation technique, in which we compute the cross-correlation between the action potential train of a neuron and a randomized sequence of long bright and dark bar stimuli that are flashed throughout the receptive field. Spatiotemporal receptive-field profiles of LGN neurons generally exhibit a biphasic temporal response, as well as the classical center-surround spatial organization. For nonlagged cells, the first temporal phase of the response dominates, whereas for lagged neurons, the second temporal phase of the response is typically the largest. This temporal phase difference between lagged and nonlagged cells accounts for their divergent behavior in response to flashed stimuli. Most LGN cells exhibit some degree of space-time inseparability, which means that the receptive field cannot simply be viewed as the product of a spatial waveform and a temporal waveform. In these cases, the response of the surround is typically delayed relative to that of the center, and there is some blending of center and surround during the time course of the response. We demonstrate that a simple extension of the traditional difference-of-Gaussians (DOG) model, in which the surround response is delayed relative to that of the center, accounts nicely for these findings. With regard to development, our analysis shows that spatial and temporal aspects of receptive field structure mature with markedly different time courses. After 4 wk postnatal, there is little change in the spatial organization of LGN receptive fields, with the exception of a weak, but significant, trend for the surround to become smaller and stronger with age. In contrast, there are substantial changes in temporal receptive-field structure after 4 wk postnatal. From 4 to 8 wk postnatal, the shape of the temporal response profile changes, becoming more biphasic, but the latency and duration of the response remain unchanged. From 8 wk postnatal to adulthood, the shape of the temporal profile remains approximately constant, but there is a dramatic decline in both the latency and duration of the response. Comparison of our results with recent data from cortical (area 17) simple cells reveals that the temporal development of LGN cells accounts for a substantial portion of the temporal maturation of simple cells.


Sign in / Sign up

Export Citation Format

Share Document