Spatiotemporal Receptive Field Organization in the Lateral Geniculate Nucleus of Cats and Kittens

1997 ◽  
Vol 78 (2) ◽  
pp. 1045-1061 ◽  
Author(s):  
Daqing Cai ◽  
Gregory C. Deangelis ◽  
Ralph D. Freeman

Cai, Daqing, Gregory C. DeAngelis, and Ralph D. Freeman. Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J. Neurophysiol. 78: 1045–1061, 1997. We have studied the spatiotemporal receptive-field organization of 144 neurons recorded from the dorsal lateral geniculate nucleus (dLGN) of adult cats and kittens at 4 and 8 wk postnatal. Receptive-field profiles were obtained with the use of a reverse correlation technique, in which we compute the cross-correlation between the action potential train of a neuron and a randomized sequence of long bright and dark bar stimuli that are flashed throughout the receptive field. Spatiotemporal receptive-field profiles of LGN neurons generally exhibit a biphasic temporal response, as well as the classical center-surround spatial organization. For nonlagged cells, the first temporal phase of the response dominates, whereas for lagged neurons, the second temporal phase of the response is typically the largest. This temporal phase difference between lagged and nonlagged cells accounts for their divergent behavior in response to flashed stimuli. Most LGN cells exhibit some degree of space-time inseparability, which means that the receptive field cannot simply be viewed as the product of a spatial waveform and a temporal waveform. In these cases, the response of the surround is typically delayed relative to that of the center, and there is some blending of center and surround during the time course of the response. We demonstrate that a simple extension of the traditional difference-of-Gaussians (DOG) model, in which the surround response is delayed relative to that of the center, accounts nicely for these findings. With regard to development, our analysis shows that spatial and temporal aspects of receptive field structure mature with markedly different time courses. After 4 wk postnatal, there is little change in the spatial organization of LGN receptive fields, with the exception of a weak, but significant, trend for the surround to become smaller and stronger with age. In contrast, there are substantial changes in temporal receptive-field structure after 4 wk postnatal. From 4 to 8 wk postnatal, the shape of the temporal response profile changes, becoming more biphasic, but the latency and duration of the response remain unchanged. From 8 wk postnatal to adulthood, the shape of the temporal profile remains approximately constant, but there is a dramatic decline in both the latency and duration of the response. Comparison of our results with recent data from cortical (area 17) simple cells reveals that the temporal development of LGN cells accounts for a substantial portion of the temporal maturation of simple cells.

2010 ◽  
Vol 103 (2) ◽  
pp. 779-792 ◽  
Author(s):  
Stephen M. Rogers ◽  
George W. J. Harston ◽  
Fleur Kilburn-Toppin ◽  
Thomas Matheson ◽  
Malcolm Burrows ◽  
...  

Desert locusts ( Schistocerca gregaria ) can transform reversibly between the swarming gregarious phase and a solitarious phase, which avoids other locusts. This transformation entails dramatic changes in morphology, physiology, and behavior. We have used the lobula giant movement detector (LGMD) and its postsynaptic target, the descending contralateral movement detector (DCMD), which are visual interneurons that detect looming objects, to analyze how differences in the visual ecology of the two phases are served by altered neuronal function. Solitarious locusts had larger eyes and a greater degree of binocular overlap than those of gregarious locusts. The receptive field to looming stimuli had a large central region of nearly equal response spanning 120° × 60° in both phases. The DCMDs of gregarious locusts responded more strongly than solitarious locusts and had a small caudolateral focus of even further sensitivity. More peripherally, the response was reduced in both phases, particularly ventrally, with gregarious locusts showing greater proportional decrease. Gregarious locusts showed less habituation to repeated looming stimuli along the eye equator than did solitarious locusts. By contrast, in other parts of the receptive field the degree of habituation was similar in both phases. The receptive field organization to looming stimuli contrasts strongly with the receptive field organization of the same neurons to nonlooming local-motion stimuli, which show much more pronounced regional variation. The DCMDs of both gregarious and solitarious locusts are able to detect approaching objects from across a wide expanse of visual space, but phase-specific changes in the spatiotemporal receptive field are linked to lifestyle changes.


2005 ◽  
Vol 94 (3) ◽  
pp. 1789-1797 ◽  
Author(s):  
Ben S. Webb ◽  
Christopher J. Tinsley ◽  
Christopher J. Vincent ◽  
Andrew M. Derrington

A suppressive surround modulates the responsiveness of cells in the lateral geniculate nucleus (LGN), but we know nothing of its spatial structure or the way in which it combines signals arising from different locations. It is generally assumed that suppressive signals are either uniformly distributed or balanced in opposing regions outside the receptive field. Here, we examine the spatial distribution and summation of suppressive signals outside the receptive field in extracellular recordings from 46 LGN cells in anesthetized marmosets. The receptive field of each cell was stimulated with a drifting sinusoidal grating of the preferred size and spatial and temporal frequency; we probed different positions in the suppressive surround with either a large half-annular grating or a small circular grating patch of the preferred spatial and temporal frequency. In many of the cells with a strong suppressive surround (29/46), the spatial distribution of suppression showed clear deviation from circular symmetry. In the majority of these of cells, suppressive signals were spatially asymmetrical or balanced in opposing areas outside the receptive field. A suppressive area was larger than the classical receptive field itself and spatial summation within and between these areas was nonlinear. There was no bias for suppression to arise from foveal or nasal retina where cone density is higher and no other sign of a systematic spatial organization to the suppressive surround. We conclude that nonclassical suppressive signals in LGN deviate from circular symmetry and are nonlinearly combined.


2003 ◽  
Vol 553 (2) ◽  
pp. 601-610 ◽  
Author(s):  
Casto Rivadulla ◽  
Luis Martinez ◽  
Kenneth L. Grieve ◽  
Javier Cudeiro

1993 ◽  
Vol 69 (4) ◽  
pp. 1091-1117 ◽  
Author(s):  
G. C. DeAngelis ◽  
I. Ohzawa ◽  
R. D. Freeman

1. Most studies of cortical neurons have focused on the spatial structure of receptive fields. For a more complete functional description of these neurons, it is necessary to consider receptive-field structure in the joint domain of space and time. We have studied the spatiotemporal receptive-field structure of 233 simple cells recorded from the striate cortex of adult cats and kittens at 4 and 8 wk postnatal. The dual goal of this study is to provide a detailed quantitative description of spatiotemporal receptive-field structure and to compare the developmental time courses of spatial and temporal response properties. 2. Spatiotemporal receptive-field profiles have been measured with the use of a reverse correlation method, in which we compute the cross-correlation between a neuron's response and a random sequence of small, briefly presented bright and dark stimuli. The receptive-field profiles of some simple cells are space-time separable, meaning that spatial and temporal response characteristics can be dissociated. Other cells have receptive-field profiles that are space-time inseparable. In these cases, a particular spatial location cannot be designated, unambiguously, as belonging to either an on or off subregion. However, separate on and off subregions may be clearly distinguished in the joint space-time domain. These subregions are generally tilted along an oblique axis. 3. Our observations show that spatial and temporal aspects of receptive-field structure mature with clearly different time courses. By 4 wk postnatal, the spatial symmetry and periodicity of simple-cell receptive fields have reached maturity. The spatial extent (or size) of these receptive fields is adult-like by 8 wk postnatal. In contrast, the response latency and time duration of spatiotemporal receptive fields do not mature until well beyond 8 wk postnatal. 4. By applying Fourier analysis to spatiotemporal receptive-field profiles, we have examined the postnatal development of spatial and temporal selectivity in the frequency domain. By 8 wk postnatal, spatial frequency tuning has clearly reached maturity. On the contrary, temporal frequency selectivity remains markedly immature at 8 wk. We have also examined the joint distribution of optimal spatial and temporal frequencies. From 4 wk postnatal until 8 wk postnatal, the range of optimal spatial frequencies increases substantially, whereas the range of optimal temporal frequencies remains largely unchanged. From 8 wk postnatal until adulthood, there is a large increase in optimal temporal frequencies for cells tuned to low spatial frequencies. For cells tuned to high spatial frequencies, the distribution of optimal temporal frequencies does not change much beyond 8 wk postnatal.(ABSTRACT TRUNCATED AT 400 WORDS)


2016 ◽  
Vol 36 (43) ◽  
pp. 10949-10963 ◽  
Author(s):  
V. Suresh ◽  
U. M. Ciftcio lu ◽  
X. Wang ◽  
B. M. Lala ◽  
K. R. Ding ◽  
...  

1990 ◽  
Vol 5 (6) ◽  
pp. 525-545 ◽  
Author(s):  
Earl L. Smith ◽  
Yuzo M. Chino ◽  
William H. Ridder ◽  
Kosuke Kitagawa ◽  
Andy Langston

AbstractThe purpose of this investigation was to analyze the influence of stimulus orientation on the responses of individual neurons in the monkey's lateral geniculate nucleus (LGN). Our specific goals were to assess the prevalence and the degree of orientation tuning in the monkey LGN and to determine if the preferred stimulus orientations of LGN neurons varied as a function of receptive-field position. The primary motivation for this research was to gain insight into the receptive-field configuration of LGN neurons and consequently into the neural mechanisms which determine the spatial organization of LGN receptive fields in primates.In both the parvocellular and magnocellular layers, the responses of the majority of individual neurons to sine-wave gratings varied as a function of stimulus orientation. The influence of stimulus orientation was, however, highly dependent on the spatial characteristics of the stimulus; the greatest degree of orientation bias was observed for spatial frequencies higher than the cell's optimal spatial frequency. On a population basis, the degree of orientation bias was similar for all major classes of LGN neurons (e.g. ON vs. OFF center; parvocellular vs. magnocellular) and did not vary systematically with receptive-field eccentricity. At a given receptive-field location, LGN neurons, particularly cells in the parvocellular laminae, tended to prefer either radially oriented stimuli or stimuli oriented more horizontally than their polar axis. Our analyses of the orientation-dependent changes in spatial-frequency response functions, which was based on the Soodak et al., (1987; Soodak, 1986) two-dimensional, difference-of-Gaussian receptive-field model, suggested that the orientation bias in LGN neurons was due to an elongation of the receptive-field center mechanism which in some cases appeared to consist of multiple subunits. Direct comparisons of the orientation-tuning characteristics of LGN cells and their retinal inputs (S potentials) indicated that the orientation bias in the monkey LGN reflects primarily the functional properties of individual retinal ganglion cells. We conclude that orientation sensitivity is a significant property of subcortical neurons in the primate's geniculo-cortical pathway.


2007 ◽  
Vol 97 (1) ◽  
pp. 849-857 ◽  
Author(s):  
Margaret S. Livingstone ◽  
Bevil R. Conway

We measured speed tuning of V1 cells in alert macaques to high- and low-contrast stimuli. Most V1 cells tested, both simple and complex and directional as well as nondirectional, shifted their speed tuning to slower speeds for lower contrast stimuli. We found that the space-time slant of the receptive field of directional simple cells differed for high- and low-contrast stimuli, with the space-time slant predicting higher optimum speeds for the higher-contrast stimuli; i.e., there was a larger spatial shift of the receptive-field organization per unit time. Not only did the space-time maps of directional simple cells show different slants between high- and low-contrast stimuli, but they also showed a different organization, because for high-contrast stimuli, the maps tended to show a complete inversion of the receptive-field spatial organization at long delays after stimulus onset, with initial excitation followed by suppression and initial suppression followed by excitation, but for low-contrast stimuli the receptive-field organization showed only a quadrature shift over time. We show that a simple modification of earlier models for the generation of direction-selective simple cells can account for these observations.


Sign in / Sign up

Export Citation Format

Share Document