nonlinear response
Recently Published Documents


TOTAL DOCUMENTS

2312
(FIVE YEARS 343)

H-INDEX

67
(FIVE YEARS 8)

Sadhana ◽  
2022 ◽  
Vol 47 (1) ◽  
Author(s):  
Sanjit Biswas ◽  
Rohit Ralli ◽  
Bappaditya Manna ◽  
Shiva Shankar Choudhary ◽  
Manoj Datta

2022 ◽  
Author(s):  
Kirill Grigoriev ◽  
Vladimir Makarov

Abstract Aiming to study the nonlinear response of the surface of isotropic chiral medium, we obtained analytical expression relating the transverse amplitudes of the spatial Fourier-spectra of two incident arbitrary polarized fundamental beams and one signal reflected beam at the sum-frequency within the first-order approximation by their divergence angles. The calculations, carried out in paraxial approximation, simultaneously take into account the spatial dispersion of the bulk of the medium, its near-surface heterogeneity and the transverse finiteness of the three interacting light beams with arbitrary amplitude profiles and orientation in space. A special compact form for the final formulas was found, which makes use of effective nonlinear transformation tensors, the components of which are solely determined by the geometry of incidence of the beams and the material constants of the medium. A possibility of ``switching off'' the certain mechanisms of nonlinear response by choosing the specific polarization states of the incident beams is discussed.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pandimani ◽  
Markandeya Raju Ponnada ◽  
Yesuratnam Geddada

Purpose The partially prestressed concrete beam with unbonded tendon is still an active field of research because of the difficulty in analyzing and understanding its behavior. The finite-element (FE) simulation of such beams using numerical software is very scarce in the literature and therefore this study is taken to demonstrate the modeling aspects of unbonded partially prestressed concrete (UPPSC) beams. This study aims to present the three-dimensional (3-D) nonlinear FE simulations of UPPSC beams subjected to monotonic static loadings using the numerical analysis package ANSYS. Design/methodology/approach The sensitivity study is carried out with three different mesh densities to obtain the optimum elements that reflect on the load–deflection behavior of numerical models, and the model with optimum element density is used further to model all the UPPSC beams in this study. Three half-symmetry FE model is constructed in ANSYS parametric design language domain with proper boundary conditions at the symmetry plane and support to achieve the same response as that of the full-scale experimental beam available in the literature. The linear and nonlinear material behavior of prestressing tendon and conventional steel reinforcements, concrete and anchorage and loading plates are modeled using link180, solid65 and solid185 elements, respectively. The Newton–Raphson iteration method is used to solve the nonlinear solution of the FE models. Findings The evolution of concrete cracking at critical loadings, yielding of nonprestressed steel reinforcements, stress increment in the prestressing tendon, stresses in concrete elements and the complete load–deflection behavior of the UPPSC beams are well predicted by the proposed FE model. The maximum discrepancy of ultimate moments and deflections of the validated FE models exhibit 13% and −5%, respectively, in comparison with the experimental results. Practical implications The FE analysis of UPPSC beams is done using ANSYS software, which is a versatile tool in contrast to the experimental testing to study the stress increments in the unbonded tendons and assess the complete nonlinear response of partially prestressed concrete beams. The validated numerical model and the techniques presented in this study can be readily used to explore the parametric analysis of UPPSC beams. Originality/value The developed model is capable of predicting the strength and nonlinear behavior of UPPSC beams with reasonable accuracy. The load–deflection plot captured by the FE model is corroborated with the experimental data existing in the literature and the FE results exhibit good agreement against the experimentally tested beams, which expresses the practicability of using FE analysis for the nonlinear response of UPPSC beams using ANSYS software.


Geoderma ◽  
2022 ◽  
Vol 405 ◽  
pp. 115457
Author(s):  
Kai Yang ◽  
Yunge Zhao ◽  
Liqian Gao ◽  
Hui Sun ◽  
Kangmin Gu
Keyword(s):  

2022 ◽  
Vol 312 ◽  
pp. 108721
Author(s):  
Xiaowen Song ◽  
Qian Chen ◽  
Kexin Wang ◽  
Xianjin Zhu ◽  
Tao Zhang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 141
Author(s):  
Georgy A. Ermolaev ◽  
Dmitry I. Yakubovsky ◽  
Marwa A. El-Sayed ◽  
Mikhail K. Tatmyshevskiy ◽  
Arslan B. Mazitov ◽  
...  

SnS2 and SnSe2 have recently been shown to have a wide range of applications in photonic and optoelectronic devices. However, because of incomplete knowledge about their optical characteristics, the use of SnS2 and SnSe2 in optical engineering remains challenging. Here, we addressed this problem by establishing SnS2 and SnSe2 linear and nonlinear optical properties in the broad (300–3300 nm) spectral range. Coupled with the first-principle calculations, our experimental study unveiled the full dielectric tensor of SnS2 and SnSe2. Furthermore, we established that SnS2 is a promising material for visible high refractive index nanophotonics. Meanwhile, SnSe2 demonstrates a stronger nonlinear response compared with SnS2. Our results create a solid ground for current and next-generation SnS2- and SnSe2-based devices.


Sign in / Sign up

Export Citation Format

Share Document