blue light
Recently Published Documents


TOTAL DOCUMENTS

6743
(FIVE YEARS 1636)

H-INDEX

140
(FIVE YEARS 17)

2022 ◽  
Author(s):  
Shuxun Yu ◽  
XIAO li ◽  
Yuanlong Wu ◽  
Zhenping Liu ◽  
Zhonghua Li ◽  
...  

The shoot apical meristem (SAM) is a special category of tissue with pluripotency that forms new organs and individuals, especially floral individuals. However, little is known about the fate of cotton SAMs as a tunica corpus structure. Here, we demonstrate that cotton SAM fate decisions depend on light signals and circadian rhythms, and the genes GhFKF1, GhGI, GhCRY1 and GhCO were responsible for SAM fate decisions and highlighted via RNA sequencing (RNA-seq) analysis of different cotton cultivars, as confirmed by genetic analysis via the CRISPR-Cas9 system. In situ hybridization (ISH) analysis showed that the GhCO gene, induced by a relatively high blue light proportion, was highly upregulated during the initiation of floral meristems (FMs). Further blue light treatment analysis showed that the transition from vegetative to reproductive growth of SAM was promoted by a high proportion of blue light, coupled with high expression of the blue light-responsive genes GhCO and GhCRY1. Taken together, our study suggests that blue light signalling plays a key role in the fate decision of cotton SAM. These results provide a strategy to regulate the SAM differentiation of cotton by using the CRISPR-Cas9 system to change the ratio of red and blue light absorption to breed early-maturity cotton.


2022 ◽  
Author(s):  
Muhammad Amin Padhiar ◽  
Minqiang Wang ◽  
Yongqiang Ji ◽  
Zhi Yang ◽  
Arshad Saleem Bhatti

Abstract In recent years, significant progress has been made in the red and green perovskite quantum dots (PQDs) based light-emitting devices. However, a scarcity of blue-emitting devices that are extremely efficient precludes their research and development for optoelectronic applications. Taking advantage of tunable bandgaps of PQDs over the entire visible spectrum, herein we tune optical properties of CSPbBr3 by mixing Nd3+ trivalent lanthanide halide cations for blue light-emitting devices. The CsPbBr3 PQDs doped with Nd3+ trivalent lanthanide halide cations emitted strong photoemission from green into the blue region. By adjusting their doping concentration, a tunable wavelength from (515 nm) to (450 nm) was achieved with FWHM from (37.83 nm) to (16.6 nm). We simultaneously observed PL linewidth broadening thermal quenching of PL and the blue shift of the optical bandgap from temperature-dependent PL studies. The Nd3+ cations into CsPbBr3 PQDs more efficiently reduced non-radiative recombination. As a result of the efficient removal of defects from PQDs, the photoluminescence quantum yield (PLQY) has been significantly increased to 91% in the blue-emitting region. Significantly, Nd3+ PQDs exhibit excellent long-term stability against the external environment, including water, temperature, and ultraviolet light irradiation. Moreover, we successfully transformed Nd3+ doped PQDs into highly fluorescent nanocomposites. Incorporating these findings, we fabricate and test a stable blue light-emitting LED with EL emission at (462 nm), (475 nm), and successfully produce white light emission from Nd3+ doped nanocomposites with a CIE at (0.32, 0.34), respectively. The findings imply that low-cost Nd3+ doped perovskites may be attractive as light converters in LCDs with a broad color gamut.


Author(s):  
Andras Lukacs ◽  
Peter J. Tonge ◽  
Stephen R. Meech
Keyword(s):  

2022 ◽  
Vol 8 (1) ◽  
pp. 50
Author(s):  
Yifan Li ◽  
Xiya Meng ◽  
Degang Guo ◽  
Jia Gao ◽  
Qiwei Huang ◽  
...  

Light is perceived by photoreceptors in fungi and further integrated into the stress-activated MAPK HOG pathway, and thereby potentially activates the expression of genes for stress responses. This indicates that the precise control of light conditions can likely improve the conidial yield and stress resistance to guarantee the low cost and long shelf life of Trichoderma-based biocontrol agents and biofertilizers. In this study, effects of wavelengths and intensities of light on conidial yield and stress tolerance to osmotic, oxidative and pH stresses in Trichoderma guizhouense were investigated. We found that 2 μmol photons/(m2 × s) of blue light increased the conidial yield more than 1000 folds as compared to dark condition and simultaneously enhanced conidial stress resistance. The enhanced conidial stress resistance is probably due to the upregulated stress-related genes in blue light, which is under the control of the blue light receptor BLR1 and the MAP kinase HOG1.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 350
Author(s):  
Agnieszka Wolska ◽  
Andrzej Najmiec ◽  
Dariusz Sawicki

The aim of the study was to define whether changes in psychophysical performance will occur after the exposure to light of a specific color during the early afternoon decrease in work capacity. The evaluation of psychophysical performance was carried out on a group of 50 subjects using the following tools: Grandjean Scale, Attention and Perceptiveness Test (TUS), and GONOGO test. The study was performed for exposure to reference light, white light enriched by blue light (WBL), and white light enriched by red light (WRL). The analysis of psychophysical performance results indicates the positive influence of a specific color of light on different factors of psychophysical performance. Exposure to WRL among participants from the 22–34 subgroup contributed to an increase in the number of correct tests and the speed of work as well as a decrease in the number of mistakes, less boredom, and higher performance. The exposure to WBL among participants from the 55+ subgroup decreased the number of mistakes and reduced the response time. The results are consistent with the outcomes of previous research carried out on an international level, confirming that blue and red light are effective at increasing psychophysical performance. It was demonstrated that the psychophysical performance increases also when blue or red light is a significant component in the spectrum of white light.


2022 ◽  
Vol 54 (2) ◽  
Author(s):  
Shimaa El-Shemy ◽  
Arafa H. Aly ◽  
Hassan Sayed ◽  
M. F. Eissa

Sign in / Sign up

Export Citation Format

Share Document