scholarly journals Correction: Clancy et al., Structure of a Single Whisker Representation in Layer 2 of Mouse Somatosensory Cortex

2015 ◽  
Vol 35 (24) ◽  
pp. 9246-9246
Keyword(s):  
2018 ◽  
Author(s):  
Michelle W. Antoine ◽  
Philipp Schnepel ◽  
Tomer Langberg ◽  
Daniel E. Feldman

SummaryDistinct genetic forms of autism are hypothesized to share a common increase in excitation-inhibition (E-I) ratio in cerebral cortex, causing hyperexcitability and excess spiking. We provide the first systematic test of this hypothesis across 4 mouse models (Fmr1−/y,Cntnap2−/-,16p11.2del/+,Tsc2+/-), focusing on somatosensory cortex. All autism mutants showed reduced feedforward inhibition in layer 2/3 coupled with more modest, variable reductions in feedforward excitation, driving a common increase in E-I conductance ratio. Despite this, feedforward spiking, synaptic depolarization and spontaneous spiking were essentially normal. Modeling revealed that E and I conductance changes in each mutant were quantitatively matched to yield stable, not increased, synaptic depolarization for cells near spike threshold. Correspondingly, whisker-evoked spiking was not increasedin vivo, despite detectably reduced inhibition. Thus, elevated E-I ratio is a common circuit phenotype, but appears to reflect homeostatic stabilization of synaptic drive, rather than driving network hyperexcitability in autism.


2008 ◽  
Vol 28 (33) ◽  
pp. 8273-8284 ◽  
Author(s):  
M. Helmstaedter ◽  
J. F. Staiger ◽  
B. Sakmann ◽  
D. Feldmeyer

2007 ◽  
Vol 98 (3) ◽  
pp. 1566-1580 ◽  
Author(s):  
Patrick J. Drew ◽  
Daniel E. Feldman

Rats rhythmically sweep their whiskers over object features, generating sequential deflections of whisker arcs. Such moving wavefronts of whisker deflection are likely to be fundamental elements of natural somatosensory input. To determine how moving wavefronts are represented in somatosensory cortex (S1), we measured single- and multiunit neural responses in S1 of anesthetized rats to moving wavefronts applied through a piezoelectric whisker deflector array. Wavefronts consisted of sequential deflections of individual whisker arcs, which moved progressively across the whisker array. Starting position (starting arc), direction, and velocity of wavefronts were varied. Neurons responded strongly only when wavefront starting position included their principal whisker (PW). When wavefronts started at neighboring positions and swept through the PW, responses to the PW arc were suppressed by ≤95%, and responses over the entire wavefront duration were suppressed by ≤60% compared with wavefronts that initiated with the PW. Suppression occurred with interarc deflection delays of ≥5 ms, was maximal at 20 ms, and recovered within 100–200 ms. Suppression of PW arc responses during wavefronts was largely independent of wavefront direction. However, layer 2/3 neurons showed direction selectivity for responses to the entire wavefront (the entire sequence of SW and PW arc deflection). Wavefront direction selectivity was correlated with receptive field somatotopy and reflected differential responses to the specific SWs that were deflected first in a wavefront. These results indicate that suppressive interwhisker interactions shape responses to wavefronts, resulting in increased salience of wavefront starting position, and, in some neurons, preference for wavefront direction.


Neuroscience ◽  
2018 ◽  
Vol 368 ◽  
pp. 46-56 ◽  
Author(s):  
Sung Eun Kwon ◽  
Vassiliy Tsytsarev ◽  
Reha S. Erzurumlu ◽  
Daniel H. O'Connor
Keyword(s):  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Luke Y. Prince ◽  
Matthew M. Tran ◽  
Dorian Grey ◽  
Lydia Saad ◽  
Helen Chasiotis ◽  
...  

AbstractNeurons can carry information with both the synchrony and rate of their spikes. However, it is unknown whether distinct subtypes of neurons are more sensitive to information carried by synchrony versus rate, or vice versa. Here, we address this question using patterned optical stimulation in slices of somatosensory cortex from mouse lines labelling fast-spiking (FS) and regular-spiking (RS) interneurons. We used optical stimulation in layer 2/3 to encode a 1-bit signal using either the synchrony or rate of activity. We then examined the mutual information between this signal and the interneuron responses. We found that for a synchrony encoding, FS interneurons carried more information in the first five milliseconds, while both interneuron subtypes carried more information than excitatory neurons in later responses. For a rate encoding, we found that RS interneurons carried more information after several milliseconds. These data demonstrate that distinct interneuron subtypes in the neocortex have distinct sensitivities to synchrony versus rate codes.


2021 ◽  
Author(s):  
Hironobu Osaki ◽  
Moeko Kanaya ◽  
Yoshifumi Ueta ◽  
Mariko Miyata

Nociception, somatic discriminative aspects of pain, is represented in the primary somatosensory cortex (S1), as is touch, but the separation and the interaction of the two modalities within S1 remain unclear. Here, we show the spatially-distinct tactile and nociceptive processing in the granular barrel field (BF) and the adjacent dysgranular region (Dys) in mouse S1. Simultaneous recording of the multiunit activity across subregions reveals that Dys responses are selective to noxious input whereas those of BF are to tactile input. At the single neuron level, nociceptive information is represented separately from the tactile information in Dys layer 2/3. In contrast, both modalities are converged in a layer 5 neuron in each region. Interestingly, the two modalities interfere with each other in both regions. We further demonstrate that Dys, but not BF, activity is critically involved in neuropathic pain and pain behavior, and thus provide evidence that Dys is a center specialized for nociception in S1.


Sign in / Sign up

Export Citation Format

Share Document