conductance ratio
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 3)

H-INDEX

17
(FIVE YEARS 0)

Author(s):  
Владислав Анатольевич Савченко ◽  
Ольга Александровна Гуськова

Молекулярные переключатели на основе азобензола (азо) являются светочувствительными молекулами, которые могут переключаться между двумя конфигурационными состояниями под действием света. Светочувствительные азо -монослои можно использовать для модуляции работы выхода, то есть они влияют на свойства электродов. В данной работе мы отвечаем на вопрос, что происходит со структурами, электронными свойствами и перераспределением заряда в монослоях азобитиофена (азо-бт) в зависимости от светового стимула, используя теорию функционала плотности. Моделируются два типа переключателей, различающихся расположением азо и бт от группы пришивки молекулы к поверхности: азо-бт и бт-азо . Один из них (бт-азо) описан в литературе, другой же является продуктом молекулярного дизайна. Мы описываем транс- и цис-изомеры для каждого переключателя, находящегося в контакте с кластером золота. Наше моделирование объясняет гигантское соотношение в проводимости ON/OFF-состояний при воздействии УФ-излучения на монослой улучшенной электронной связью между цис-изомерами (состояние ON) и кластером золота. Транс-изомеры же (OFF состояние) моделируемых переключателей играют роль изоляторов. Кроме того, мы показываем, какие именно свойства улучшаются после молекулярного дизайна. Данное исследование открывает новые возможности в разработке инновационных модификаций поверхности электродов. Molecular switches based on azobenzene (azo) are defined as light-responsive molecules which can change between two configurational states under light stimuli. Responsive azo monolayers can be used to modulate the work function, i.e. they tune the properties of the interfaces at the electrodes. In this work, we investigate what happens to the structures, electronic properties, and the charge redistribution within azo-bithiophene (azo-bt) monolayers depending on the light stimulus using density functional theory. Two types of switches differing in the order of azo and bt counting from the anchor group are modelled: azo-bt and bt-azo . One of them (bt-azo) is known from the literature, the remaining one is a product of rational design. We describe trans- and cis-isomers for each switch being in a contact with a gold cluster. Our simulations explain a giant ON/OFF conductance ratio upon UV light stimulus by improved electronic coupling between the cis-isomers (ON-state) and the gold cluster. The trans-isomers (OFF-state) of the simulated switches play the role of the insulators. Moreover, we show which molecular properties are enchanced by molecular design. This study opens up new avenues to the development of the innovative design of electrode surface modifications.


Author(s):  
Julian D. Osorio ◽  
Alejandro Rivera ◽  
Obie Abakporo ◽  
Juan C Ordonez ◽  
Rob Hovsapian

Abstract In this work, a thermodynamic model based on endoreversible engine approach is developed to analyze the performance of heat engines operating under different thermodynamic cycles. The model considers finite heat transfer rate, variable heat source and sink temperatures, and irreversibilities associated with the expansion and compression. Expressions for the maximum power and efficiency at maximum power output are obtained as a function of hot and cold reservoir temperatures, the equivalent isentropic efficiency of compression and expansion components, and the effective conductance ratio between heat exchangers. In all cases, the Curzon-Ahlborn efficiency is retrieved at constant reservoir temperatures and neglected compression-expansion irreversibilities. The proposed model allows assessing the effect of isentropic efficiencies and heat exchanger design and operation characteristics for different thermodynamic cycles.


2018 ◽  
Author(s):  
Michelle W. Antoine ◽  
Philipp Schnepel ◽  
Tomer Langberg ◽  
Daniel E. Feldman

SummaryDistinct genetic forms of autism are hypothesized to share a common increase in excitation-inhibition (E-I) ratio in cerebral cortex, causing hyperexcitability and excess spiking. We provide the first systematic test of this hypothesis across 4 mouse models (Fmr1−/y,Cntnap2−/-,16p11.2del/+,Tsc2+/-), focusing on somatosensory cortex. All autism mutants showed reduced feedforward inhibition in layer 2/3 coupled with more modest, variable reductions in feedforward excitation, driving a common increase in E-I conductance ratio. Despite this, feedforward spiking, synaptic depolarization and spontaneous spiking were essentially normal. Modeling revealed that E and I conductance changes in each mutant were quantitatively matched to yield stable, not increased, synaptic depolarization for cells near spike threshold. Correspondingly, whisker-evoked spiking was not increasedin vivo, despite detectably reduced inhibition. Thus, elevated E-I ratio is a common circuit phenotype, but appears to reflect homeostatic stabilization of synaptic drive, rather than driving network hyperexcitability in autism.


2017 ◽  
Vol 38 (8) ◽  
pp. 1023-1026 ◽  
Author(s):  
Kibong Moon ◽  
Myounghoon Kwak ◽  
Jaesung Park ◽  
Dongwook Lee ◽  
Hyunsang Hwang

2017 ◽  
Vol 5 (2) ◽  
pp. 172-179 ◽  
Author(s):  
Manoj Khanal

The interaction of an anionic dye (Methyl Orange) with cationic surfactant (Cetyltrimethylammonium Bromide, CTAB) in the series of solvent containing variable compositions of methanol-water mixture (10%, 20%, 30% and 40%) was studied at room temperature (31±2oC). Conductivity measurements were done for the investigation of interaction of dyes. The specific conductance of 6.58x10-5 M to 59.22x10-5M surfactant (CTAB) and these surfactants with 1.008x10-3M dye (MO) mixtures were noted at room temperature. A theoretical model was used to calculate conductance ratio from the data of measured specific conductance values. Values of conductance ratio of CTAB-MO mixtures were found to be all less than 1 which indicated that CTAB-MO dye -surfactant mixture exert significant influence on the degree of interaction.Int. J. Appl. Sci. Biotechnol. Vol 5(2): 172-179


Author(s):  
Francesco Crespi ◽  
David Sánchez ◽  
Kevin Hoopes ◽  
Brian Choi ◽  
Nicole Kuek

This paper presents a method to evaluate the off-design performance of a heat exchanger without specifying detailed heat exchanger geometry. Presently, off-design heat exchanger performance evaluation is often done by assuming one of the terms in a lumped volume approach is constant (such as UA, temperature difference, ε etc.) or by producing a draft heat exchanger geometry to evaluate the local heat transfer coefficients in off-design operation. As opposed to these approaches, the method presented in this paper manages to accurately predict off-design heat exchanger performance with very limited information. The method relies on a single parameter beyond the design operating conditions, namely the conductance ratio which is the product of heat transfer coefficient and area on both sides of the heat exchanger. The method is particularly powerful as it allows for the exploration of different off-design scenarios for a given on-design operating point. The paper presents a theoretical introduction of the method along with a validation using data provided by BMPC and Alfa Laval for different types of heat exchangers and working fluids, including supercritical CO2. The method is then used to model the off-design performance of a simple recuperated sCO2 cycle, showing its ability to capture the off-design performance of a heat exchanger without specifying its detailed geometry and the impact of conductance ratio on off-design cycle performance.


2017 ◽  
Vol 822 ◽  
pp. 880-891 ◽  
Author(s):  
Thomas Arlt ◽  
Jānis Priede ◽  
Leo Bühler

We analyse numerically the linear stability of fully developed liquid metal flow in a square duct with insulating side walls and thin, electrically conducting horizontal walls. The wall conductance ratio $c$ is in the range of 0.01 to 1 and the duct is subject to a vertical magnetic field with Hartmann numbers up to $\mathit{Ha}=10^{4}$. In a sufficiently strong magnetic field, the flow consists of two jets at the side walls and a near-stagnant core with relative velocity ${\sim}(c\mathit{Ha})^{-1}$. We find that for $\mathit{Ha}\gtrsim 300,$ the effect of wall conductivity on the stability of the flow is mainly determined by the effective Hartmann wall conductance ratio $c\mathit{Ha}.$ For $c\ll 1$, the increase of the magnetic field or that of the wall conductivity has a destabilizing effect on the flow. Maximal destabilization of the flow occurs at $\mathit{Ha}\approx 30/c$. In a stronger magnetic field with $c\mathit{Ha}\gtrsim 30$, the destabilizing effect vanishes and the asymptotic results of Priede et al. (J. Fluid Mech., vol. 649, 2010, pp. 115–134) for ideal Hunt’s flow with perfectly conducting Hartmann walls are recovered.


Sign in / Sign up

Export Citation Format

Share Document