Generalized partition functions and subgroup growth of free products of nilpotent groups

Analysis ◽  
2005 ◽  
Vol 25 (4) ◽  
Author(s):  
Thomas W. Müller ◽  
Jan-Christoph Schlage-Puchta

SummaryWe estimate the growth of homomorphism numbers of a torsion-free nilpotent group

1955 ◽  
Vol 7 ◽  
pp. 169-187 ◽  
Author(s):  
S. A. Jennings

Introduction. In this paper we study the (discrete) group ring Γ of a finitely generated torsion free nilpotent group over a field of characteristic zero. We show that if Δ is the ideal of Γ spanned by all elements of the form G − 1, where G ∈ , thenand the only element belonging to Δw for all w is the zero element (cf. (4.3) below).


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Bettina Eick ◽  
Ann-Kristin Engel

AbstractWe consider the isomorphism problem for the finitely generated torsion free nilpotent groups of Hirsch length at most five. We show how this problem translates to solving an explicitly given set of polynomial equations. Based on this, we introduce a canonical form for each isomorphism type of finitely generated torsion free nilpotent group of Hirsch length at most 5 and, using a variation of our methods, we give an explicit description of its automorphisms.


1984 ◽  
Vol 25 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Martin Lorenz

Let G be a finitely generated (f.g.) torsion-free nilpotent group. Then the group algebra k[G] of G over a field k is a Noetherian domain and hence has a classical division ring of fractions, denoted by k(G). Recently, the division algebras k(G) and, somewhat more generally, division algebras generated by f.g. nilpotent groups have been studied in [3] and [5]. These papers are concerned with the question to what extent the division algebra determines the group under consideration. Here we continue the study of the division algebras k(G) and investigate their Gelfand–Kirillov (GK–) transcendence degree.


2007 ◽  
Vol 83 (2) ◽  
pp. 149-156
Author(s):  
Gilbert Baumslag

AbstractAn element in a free group is a proper power if and only if it is a proper power in every nilpotent factor group. Moreover there is an algorithm to decide if an element in a finitely generated torsion-free nilpotent group is a proper power.


1998 ◽  
Vol 1 ◽  
pp. 9-24 ◽  
Author(s):  
C. R. Leedham-Green ◽  
Leonard H. Soicher

AbstractWe describe the “Deep Thought” algorithm, which can, among other things, take a commutator presentation for a finitely generated torsion-free nilpotent group G, and produce explicit polynomials for the multiplication of elements of G. These polynomials were first shown to exist by Philip Hall, and allow for “symbolic collection” in finitely generated nilpotent groups. We discuss various practicalissues in calculations in such groups, including the construction of a hybrid collector, making use of both the polynomials and ordinary collection from the left.


2016 ◽  
Vol 26 (08) ◽  
pp. 1529-1546 ◽  
Author(s):  
Gilbert Baumslag ◽  
Charles F. Miller ◽  
Gretchen Ostheimer

We describe an algorithm for deciding whether or not a given finitely generated torsion-free nilpotent group is decomposable as the direct product of nontrivial subgroups.


1995 ◽  
Vol 117 (3) ◽  
pp. 431-438 ◽  
Author(s):  
Charles Cassidy ◽  
Caroline Lajoie

AbstractIn this paper, we characterize the genus of an arbitrary torsion-free finitely generated nilpotent group of class two and of Hirsch length six by means of a finite number of arithmetical invariants. An algorithm which permits the enumeration of all possible genera that can occur under the conditions above is also given.


2010 ◽  
Vol 20 (05) ◽  
pp. 661-669 ◽  
Author(s):  
TARA C. DAVIS

We prove that a subgroup of a finitely generated free nilpotent group F is undistorted if and only if it is a retract of a subgroup of finite index in F.


2004 ◽  
Vol 11 (1) ◽  
pp. 27-33
Author(s):  
M. Amaglobeli

Abstract The canonical form of elements of a 𝐺-free nilpotent group of step 3 is defined assuming that the group 𝐺 contains no elements of order 2.


2018 ◽  
Vol 2018 (738) ◽  
pp. 281-298 ◽  
Author(s):  
Caleb Eckhardt ◽  
Paul McKenney

Abstract We show that group C*-algebras of finitely generated, nilpotent groups have finite nuclear dimension. It then follows, from a string of deep results, that the C*-algebra A generated by an irreducible representation of such a group has decomposition rank at most 3. If, in addition, A satisfies the universal coefficient theorem, another string of deep results shows it is classifiable by its ordered K-theory and is approximately subhomogeneous. We observe that all C*-algebras generated by faithful irreducible representations of finitely generated, torsion free nilpotent groups satisfy the universal coefficient theorem.


Sign in / Sign up

Export Citation Format

Share Document