Spike timing-dependent plasticity in sparse recurrent neural networks

2014 ◽  
Vol 1 ◽  
pp. 485-488
Author(s):  
Hideyuki Kato ◽  
Tohru Ikeguchi
2019 ◽  
Author(s):  
D. Gabrieli ◽  
Samantha N. Schumm ◽  
B. Parvesse ◽  
D.F. Meaney

AbstractTraumatic brain injury (TBI) can lead to neurodegeneration in the injured circuitry, either through primary structural damage to the neuron or secondary effects that disrupt key cellular processes. Moreover, traumatic injuries can preferentially impact subpopulations of neurons, but the functional network effects of these targeted degeneration profiles remain unclear. Although isolating the consequences of complex injury dynamics and long-term recovery of the circuit can be difficult to control experimentally, computational networks can be a powerful tool to analyze the consequences of injury. Here, we use the Izhikevich spiking neuron model to create networks representative of cortical tissue. After an initial settling period with spike-timing-dependent plasticity (STDP), networks developed rhythmic oscillations similar to those seenin vivo. As neurons were sequentially removed from the network, population activity rate and oscillation dynamics were significantly reduced. In a successive period of network restructuring with STDP, network activity levels were returned to baseline for some injury levels and oscillation dynamics significantly improved. We next explored the role that specific neurons have in the creation and termination of oscillation dynamics. We determined that oscillations initiate from activation of low firing rate neurons with limited structural inputs. To terminate oscillations, high activity excitatory neurons with strong input connectivity activate downstream inhibitory circuitry. Finally, we confirm the excitatory neuron population role through targeted neurodegeneration. These results suggest targeted neurodegeneration can play a key role in the oscillation dynamics after injury.Author SummaryIn this study, we study the impact of neuronal degeneration – a process that commonly occurs after traumatic injury and neurodegenerative disease – on the neuronal dynamics in a cortical network. We create computational models of neural networks and include spike timing plasticity to alter the synaptic strength among connections as networks remodel after simulated injury. We find that spike-timing dependent plasticity helps recover the neural dynamics of an injured microcircuit, but it frequently cannot recover the original oscillation dynamics in an uninjured network. In addition, we find that selectively injuring excitatory neurons with the highest firing rate reduced the neuronal oscillations in a circuit much more than either random deletion or the removing neurons with the lowest firing rate. In all, these data suggest (a) plasticity reduces the consequences of neurodegeneration and (b) losing the most active neurons in the network has the most adverse effect on neural oscillations.


2019 ◽  
Vol 213 ◽  
pp. 453-469 ◽  
Author(s):  
W. Wang ◽  
G. Pedretti ◽  
V. Milo ◽  
R. Carboni ◽  
A. Calderoni ◽  
...  

This work addresses the methodology and implementation of a neuromorphic SNN system to compute the temporal information among neural spikes using ReRAM synapses capable of spike-timing dependent plasticity (STDP).


2002 ◽  
Vol 10 (3-4) ◽  
pp. 243-263 ◽  
Author(s):  
Ezequiel Di Paolo

Plastic spiking neural networks are synthesized for phototactic robots using evolutionary techniques. Synaptic plasticity asymmetrically depends on the precise relative timing between presynaptic and postsynaptic spikes at the millisecond range and on longer-term activity-dependent regulatory scaling. Comparative studies have been carried out for different kinds of plastic neural networks with low and high levels of neural noise. In all cases, the evolved controllers are highly robust against internal synaptic decay and other perturbations. The importance of the precise timing of spikes is demonstrated by randomizing the spike trains. In the low neural noise scenario, weight values undergo rhythmic changes at the mesoscale due to bursting, but during periods of high activity they are finely regulated at the microscale by synchronous or entrained firing. Spike train randomization results in loss of performance in this case. In contrast, in the high neural noise scenario, robots are robust to loss of information in the timing of the spike trains, demonstrating the counterintuitive results that plasticity, which is dependent on precise spike timing, can work even in its absence, provided the behavioral strategies make use of robust longer-term invariants of sensorimotor interaction. A comparison with a rate-based model of synaptic plasticity shows that under similarly noisy conditions, asymmetric spike-timing dependent plasticity achieves better performance by means of efficient reduction in weight variance over time. Performance also presents negative sensitivity to reduced levels of noise, showing that random firing has a functional value.


Sign in / Sign up

Export Citation Format

Share Document