ROTATIONAL SPECTRA AND NUCLEAR QUADRUPOLE COUPLING CONSTANTS OF IODOIMIDAZOLES

Author(s):  
Graham Cooper ◽  
Nick Walker ◽  
Anthony Legon ◽  
Chris Medcraft ◽  
Cara Anderson
1983 ◽  
Vol 38 (9) ◽  
pp. 1015-1021
Author(s):  
W. Kasten ◽  
H. Dreizler ◽  
Brian E. Job ◽  
John Sheridan

Abstract The microwave spectra of CF3CN, CH2FCN, CHDFCN, CD2FCN and CHF2CN have been measured and analysed. The nuclear quadrupole hyperfine splittings due to 14N have been measured by Microwave Fourier Transform spectroscopy. The nuclear quadrupole coupling constants, transformed to the bonding axis systems of the C-C ≡ N groups, are shown to be in accord with structural predictions of the p-electron populations at the nitrogen atom.


1983 ◽  
Vol 38 (12) ◽  
pp. 1309-1319 ◽  
Author(s):  
Yoshiaki Sasada

Abstract The rotational spectra of 3-bromothiophene in the excited states of two vibrational modes were observed and the rotational constants, the centrifugal distortion constants, and the nuclear quadrupole coupling constants were determined. The wave numbers of the two vibrational modes were evaluated to be 210 cm-1 and 320 cm-1 by measuring relative intensities of the ground and excited vibrational transitions. Variations in the inertia defect for each of the vibrational modes are compared with the results of the approximate calculation.


1991 ◽  
Vol 46 (9) ◽  
pp. 770-776 ◽  
Author(s):  
Kirsten Vormann ◽  
Helmut Dreizler ◽  
Jens Doose ◽  
Antonio Guarnieri

AbstractThe boron and nitrogen hyperfine structure in the rotational spectra of two aminoborane isotopomers, 11 BH2NH2 and 10BH2NH2, has been investigated and the quadrupole coupling constants of boron 10B, 11B and nitrogen 14N have been determined. We get the following results for the nuclear quadrupole coupling constants: χaa(11B) = -1.684 (14) MHz, χbb(11B) = -2.212 (11) MHz, χcc(11B) = 3.896(11) MHz, χaa(10B) = -3.481 (11) MHz, χbb(10B) = -4.623 (14) MHz, χCC(10B) = 8.104 (14) MHz and xaa(14N) = 0.095 (9) MHz, χbb(14N) = 2.091 (8) MHz, χcf4 (14N)=-2.186 (8) MHz. These nitrogen quadrupole coupling constants are those of the 11BH2 NH2 isotopomer. Additionally we were able to determine two out of the three spin rotation coupling constants caa, cbb, and ccc of boron, caa(11 B = 55.2 (26) kHz, cbb(11B) = 6.62 (36) kHz, caa (10B) = 15.26 (69) kHz and cbb(10B) = 4.94 (70) kHz. The spin rotation coupling constants ccc had to be fixed to zero in both cases. Furthermore we measured the rotational spectra in the mm-wave region to determine all quartic and several sextic centrifugal distortion constants according to Watson's A and S reduction


1997 ◽  
Vol 52 (4) ◽  
pp. 297-305 ◽  
Author(s):  
Barbara Kirchner ◽  
Hanspeter Huber ◽  
Gerold Steinebrunner ◽  
Helmut Dreizler ◽  
Jens-Uwe Grabow ◽  
...  

Abstract We present quantum chemical calculations on the MP4(SDQ) level with basis sets of high local quality to determine the nuclear quadrupole coupling tensor of 33S in a series of molecules, which were investigated up to now by microwave spectroscopy. The analysis of the nuclear quadrupole coupling in the rotational spectra provided experimental information on the tensors. As an example for such an analysis, improved values for thiirane, C2H433S, are given: χaa = - 32.9425(78) MHz, χbb = -16.402(14) MHz, χcc = 49.345(14) MHz.


1989 ◽  
Vol 44 (7) ◽  
pp. 669-674 ◽  
Author(s):  
N. Heineking ◽  
M.C.L. Gerry

Abstract The 14N nuclear quadrupole hyperfine structure in the rotational spectra of three isotopic species of methyl azide, CH3 14N3, CH3 15N14N2, and CH3 14N2 15N, has been resolved using microwave Fourier transform spectroscopy. The quadrupole coupling constants of 14N at all three positions have been evaluated and are compared with those from an ab initio calculation in the literature.Since the spectra of the substituted species have been obtained for the first time, they have provided new structural information: the rotational constants are consistent with a structure in which the NNN chain is slightly bent.


1991 ◽  
Vol 46 (10) ◽  
pp. 909-913
Author(s):  
◽  
Helmut Dreizler

AbstractThe boron and nitrogen hyperfine structure in the rotational spectra of aminodifluoroborane has been investigated and the quadrupole coupling constants of 11B and nitrogen have been determined. We get the following results for the nuclear quadrupole coupling constants: Χaa(11B) = - 1.971 (6) MHz, Xbb(11B) = 0.500(11) MHz, Xcc(11B) - 2.471 (11) MHz, and Xaa(14N) = 0.890 (5) MHz, Xbb(14N) = 2.303 (7) MHz, Xcc(14N) = - 3.193 (8) MHz. Additionally we determined rotational and centrifugal distortion constants according to Watson's A reduction.


1993 ◽  
Vol 48 (4) ◽  
pp. 570-576 ◽  
Author(s):  
N. Heineking ◽  
H. Dreizler

Abstract The complicated nuclear quadrupole hyperfine structure and methyl torsional fine structure in the rotational spectra of N,N-dimethylformamide and N-nitrosodimethylamine have been studied using microwave Fourier transform spectroscopy. It has been found that both molecules are rather similar in terms of their parameters of methyl group internal rotation as well as in terms of their amino nitrogen quadrupole coupling constants.


1992 ◽  
Vol 47 (10) ◽  
pp. 1067-1072 ◽  
Author(s):  
Michael Krüger ◽  
Helmut Dreizler

AbstractThe barrier heights (V3) hindering methyl internal rotation were determined with microwave Fourier transform spectroscopy from the ground vibrational state for the title molecules and found to be V3 = 3.336(52) kcal/mol for ethyl isocyanide, V3 > 3.1 kcal/mol for iso-propyl isocyanide, V3 = 2.894(23) kcal/mol for gauche-n-propyl isocyanide and V3 = 2.954(22) kcal/mol for transn- propyl isocyanide. The quadrupole coupling constants of iso-propyl isocyanide are χaa = 179.3(31) kHz, χbb = -140(15) kHz and χcc - 39(15) kHz; the constants of trans-n-propyl isocyanide were determined to be χaa = 268.1 (71) kHz, χbb = - 108(23) kHz and χcc = - 160(23) kHz.


1997 ◽  
Vol 413-414 ◽  
pp. 249-253 ◽  
Author(s):  
Ana de Luis ◽  
Juan C. López ◽  
Antonio Guarnieri ◽  
JoséL. Alonso

Sign in / Sign up

Export Citation Format

Share Document