hyperfine structures
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 20)

H-INDEX

28
(FIVE YEARS 2)

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 302
Author(s):  
Luca Bizzocchi ◽  
Silvia Alessandrini ◽  
Mattia Melosso ◽  
Víctor M. Rivilla ◽  
Cristina Puzzarini

Phosphorous-containing molecules have a great relevance in prebiotic chemistry in view of the fact that phosphorous is a fundamental constituent of biomolecules, such as RNA, DNA, and ATP. Its biogenic importance has led astrochemists to investigate the possibility that P-bearing species could have formed in the interstellar medium (ISM) and subsequently been delivered to early Earth by rocky bodies. However, only two P-bearing molecules have been detected so far in the ISM, with the chemistry of interstellar phosphorous remaining poorly understood. Here, in order to shed further light on P-carriers in space, we report a theoretical spectroscopic characterisation of the rotational spectrum of POH in its 3A″ ground electronic state. State-of-the-art coupled-cluster schemes have been employed to derive rotational constants, centrifugal distortion terms, and most of the fine and hyperfine interaction parameters, while the electron spin–spin dipolar coupling has been investigated using the multi-configuration self-consistent-field method. The computed spectroscopic parameters have been used to simulate the appearance of triplet POH rotational and ro-vibrational spectra in different conditions, from cold to warm environments, either in gas-phase experiments or in molecular clouds. Finally, we point out that the predicted hyperfine structures represent a key pattern for the recognition of POH in laboratory and interstellar spectra.


2021 ◽  
Author(s):  
Defu Wang ◽  
Xuping Shao ◽  
Yunxia Huang ◽  
Chuanliang Li ◽  
Xiaohua Yang

2020 ◽  
Vol 75 (8) ◽  
pp. 739-747
Author(s):  
Feng Hu ◽  
Yan Sun ◽  
Maofei Mei

AbstractComplete and consistent atomic data, including excitation energies, lifetimes, wavelengths, hyperfine structures, Landé gJ-factors and E1, E2, M1, and M2 line strengths, oscillator strengths, transitions rates are reported for the low-lying 41 levels of Mo XXVIII, belonging to the n = 3 states (1s22s22p6)3s23p3, 3s3p4, and 3s23p23d. High-accuracy calculations have been performed as benchmarks in the request for accurate treatments of relativity, electron correlation, and quantum electrodynamic (QED) effects in multi-valence-electron systems. Comparisons are made between the present two data sets, as well as with the experimental results and the experimentally compiled energy values of the National Institute for Standards and Technology wherever available. The calculated values including core-valence correction are found to be in a good agreement with other theoretical and experimental values. The present results are accurate enough for identification and deblending of emission lines involving the n = 3 levels, and are also useful for modeling and diagnosing plasmas.


2020 ◽  
Vol 102 (3) ◽  
Author(s):  
Hua Guan ◽  
Shaolong Chen ◽  
Xiao-Qiu Qi ◽  
Shiyong Liang ◽  
Wei Sun ◽  
...  

2020 ◽  
Vol 34 (20) ◽  
pp. 2050197
Author(s):  
Chao Chen

The Rayleigh–Ritz variational method with multiconfiguration interaction wave functions is used to calculate energies, radiative transitions and radial expectation values of the [Formula: see text] [Formula: see text] ground state and the [Formula: see text], [Formula: see text], [Formula: see text] highly excited states of C and [Formula: see text]. Hyperfine structure parameters and magnetic coupling constants of these states are also calculated in this work. The present calculations agree well with theoretical and experimental values available in the literature. Other data not reported in the literature are expected to offer valuable benchmarks for future research.


Sign in / Sign up

Export Citation Format

Share Document