scholarly journals THE MOLECULAR CONSTANTS OF THE X2Σ+, A2Π, B2Σ+, AND C2Π ELECTRONIC STATES OF THE CALCIUM MONOHALIDE RADICALS

2021 ◽  
Author(s):  
Chiheb Bahrini ◽  
Guy Taieb ◽  
Robert Field
2001 ◽  
Vol 79 (2-3) ◽  
pp. 299-343 ◽  
Author(s):  
T Hirao ◽  
P F Bernath

The A1Π – X1Σ+ and B1Σ+ – X1Σ+ transitions of copper monobromide, CuBr, were recorded with a Fourier transform spectrometer. The emission was generated by using a hollow cathode discharge of Ar buffer gas and a mixture of Cu and CuBr powders. The mass-dependent Dunham expansion formula was used to obtain improved molecular constants for the ground, A and B states. These molecular constants provided RKR potential curves and Franck–Condon factors for the A–X and B–X transitions.PACS No. 35.80 transitions. PACS No. 35.80


1980 ◽  
Vol 58 (8) ◽  
pp. 1238-1249 ◽  
Author(s):  
I. Dabrowski ◽  
G. Herzberg

A spectrum of triatomic hydrogen and deuterium was first discovered by means of an emission band with diffuse rotational structure near 5600 Å. An additional band of similar but much better resolved structure was subsequently observed near 6025 Å. The detailed analysis of these two bands for both H3 and D3 is described in this paper. Both bands are [Formula: see text] bands of a symmetric top; their structure establishes beyond doubt that triatomic hydrogen has a D3h structure in its Rydberg states. The molecular constants in upper and lower states are close to those in the ground state of H3+ (or D3+) in accordance with the assumption that these states are Rydberg states in which a single electron moves around a H3+ or D3+ core. The predicted states of such a Rydberg electron in a field of D3h symmetry account very well for the observed electronic states, both those involved in the [Formula: see text] bands described here and those involved in the [Formula: see text] bands to be discussed in subsequent papers of this series. The lowest state of the Rydberg electron 2p2E′ is unstable and dissociates to H2 + H in their ground states. It is this state that causes predissociation in the two lower states 2s2A1′and 2p2A2″ of the two [Formula: see text] bands here under discussion. The predissociation of 2s2A1′ is vibronically allowed and fairly strong such that all lines have widths of about 7 cm−1 for D3 and 30 cm−1 for H3. The predissociation of the 2p2A2″ state is vibronically forbidden and occurs only on account of ro-vibronic interaction. H3+ ions are assumed to be present in the interstellar medium. When they recombine with electrons they must necessarily emit the spectra described in this series of papers.


2010 ◽  
Vol 492 (1-3) ◽  
pp. 19-24 ◽  
Author(s):  
Vladir W. Ribas ◽  
Luiz F.A. Ferrão ◽  
Orlando Roberto-Neto ◽  
Francisco B.C. Machado

Sign in / Sign up

Export Citation Format

Share Document