Passive house design: a benchmark for thermal mass fabric integration

2012 ◽  
pp. 110-152
Author(s):  
L. Rongen
2021 ◽  
Author(s):  
Ashley Lubyk

Achieving Passive House certification requires super insulation which can significantly raise the embodied energy and carbon footprint of a project, effectively front-end loading the climate impact, especially where petrochemical foam-based products are used. This research sought to evaluate the use of straw bales - a low embodied energy, carbon sequestering agricultural by-product - to achieve PHIUS+2015 certification. A straw bale wall system was adapted to a single-family detached reference house designed to meet the Passive House standard. The wall system was evaluated for applicability across three Western Canadian cities using WUFI Passive energy simulation software to evaluate compliance; thermal bridging and hygrothermal performance were also evaluated. It was found that the proposed straw bale wall assembly satisfied the PHIUS+ 2015 requirements in all three locations - Saskatoon, Calgary, and Kelowna - with only minor changes required to the reference house design. The annual heating demand and peak heating load, the two targets most sensitive to design changes, were, respectively, 4% and 8.6% below the target in Saskatoon, 63.1% and 21.3% below in Calgary, and 63.1% and 32.6% below in Kelowna. The research also revealed that maintaining a high degree of air tightness is essential for satisfying the requirements. Overall, this research demonstrates that straw bales can be a beneficial component in creating high performance enclosures without exacting a large embodied carbon footprint.


2016 ◽  
Vol 32 ◽  
pp. 99-109 ◽  
Author(s):  
D. Dan ◽  
C. Tanasa ◽  
V. Stoian ◽  
S. Brata ◽  
D. Stoian ◽  
...  

2021 ◽  
Author(s):  
Ashley Lubyk

Achieving Passive House certification requires super insulation which can significantly raise the embodied energy and carbon footprint of a project, effectively front-end loading the climate impact, especially where petrochemical foam-based products are used. This research sought to evaluate the use of straw bales - a low embodied energy, carbon sequestering agricultural by-product - to achieve PHIUS+2015 certification. A straw bale wall system was adapted to a single-family detached reference house designed to meet the Passive House standard. The wall system was evaluated for applicability across three Western Canadian cities using WUFI Passive energy simulation software to evaluate compliance; thermal bridging and hygrothermal performance were also evaluated. It was found that the proposed straw bale wall assembly satisfied the PHIUS+ 2015 requirements in all three locations - Saskatoon, Calgary, and Kelowna - with only minor changes required to the reference house design. The annual heating demand and peak heating load, the two targets most sensitive to design changes, were, respectively, 4% and 8.6% below the target in Saskatoon, 63.1% and 21.3% below in Calgary, and 63.1% and 32.6% below in Kelowna. The research also revealed that maintaining a high degree of air tightness is essential for satisfying the requirements. Overall, this research demonstrates that straw bales can be a beneficial component in creating high performance enclosures without exacting a large embodied carbon footprint.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012164
Author(s):  
I Salerno ◽  
M F Anjos ◽  
K McKinnon ◽  
E S Mazzucchelli

Abstract We propose a model that aims to fulfill the following three necessities: the demand for refurbishing the existing built environment, the lack of a reliable means to help architects navigate among the numerous possible solutions for low-energy constructions, and the need for a multi-function tool to analyze buildings as complex systems. We introduce the Optimal Refurbishment Design (ORD) model that is a novel tool to help architects with the refurbishment of an existing building or the design of a new one. The ORD shows four innovative aspects. First, it opens the way to passive building design while focusing on affordable solutions. Second, its core component is based on mathematical optimization. Third, it simultaneously outputs optimal thermal mass and insulation of all the required elements in the building. Fourth, it automatically accounts for the user’s needs and local regulations. Unlike most of the approaches in the Literature, the ORD’s outputs are not limited by any pre-defined set of materials or strategies. We tested the ORD using a realistic study case of refurbishment, and found that the renovated house achieved the energy consumption of a Passive House by lowering its annual heating/cooling consumption by 23% with a payback period of less than 5 years.


Author(s):  
David J. Sailor ◽  
Santiago Rodriguez ◽  
Jeff Lauck

High performance buildings demand innovative and often untested strategies for improving thermal performance and reducing energy consumption while maintaining indoor environmental quality. The Passive House design standard is increasingly being implemented in residential and small commercial construction. This standard results in buildings with airtight envelopes, high levels of insulation, very high performance windows, and energy efficient appliances. The intent of this paper is to evaluate the performance of several cutting-edge high performance building technologies as implemented in a Passive House duplex constructed in Portland, Oregon, USA. We provide an overview of the performance of the entire structure from multiple viewpoints, but focus largely on the performance of the heat recovery ventilator and heat pump water heater. Interactions of these systems with occupant behavior and indoor environmental quality are also discussed.


2019 ◽  
Vol 25 (61) ◽  
pp. 1185-1190
Author(s):  
Yuancheng MAO ◽  
Ryo FUJIWARA ◽  
Siyu JI ◽  
Mao SERIKAWA ◽  
Makoto SATOH ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document