On Traces of n-Additive Mappings on Semiprime Ring

Author(s):  
Najat Muthana ◽  
◽  
Asma Ali ◽  
Kapil Kumar
Author(s):  
Siriporn Lapuangkham ◽  
Utsanee Leerawat

The main purpose of this paper is to describe the structure of a pair of additive mappings that are commuting on a semiprime ring. Furthermore, we prove that the existence of different commuting epimorphisms on a prime ring forces the ring to be commutative. Finally, we characterize additive mappings, which act as homomorphisms or antihomomorphisms on a semiprime ring.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bilal Ahmad Wani

Abstract Let ℛ be a semiprime ring with unity e and ϕ, φ be automorphisms of ℛ. In this paper it is shown that if ℛ satisfies 2 𝒟 ( x n ) = 𝒟 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) 𝒟 ( x ) + 𝒟 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒟 ( x n - 1 ) 2\mathcal{D}\left( {{x^n}} \right) = \mathcal{D}\left( {{x^{n - 1}}} \right)\phi \left( x \right) + \varphi \left( {{x^{n - 1}}} \right)\mathcal{D}\left( x \right) + \mathcal{D}\left( x \right)\phi \left( {{x^{n - 1}}} \right) + \varphi \left( x \right)\mathcal{D}\left( {{x^{n - 1}}} \right) for all x ∈ ℛ and some fixed integer n ≥ 2, then 𝒟 is an (ϕ, φ)-derivation. Moreover, this result makes it possible to prove that if ℛ admits an additive mappings 𝒟, Gscr; : ℛ → ℛ satisfying the relations 2 𝒟 ( x n ) = 𝒟 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) 𝒢 ( x ) + 𝒢 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒢 ( x n - 1 ) , 2\mathcal{D}\left( {{x^n}} \right) = \mathcal{D}\left( {{x^{n - 1}}} \right)\phi \left( x \right) + \varphi \left( {{x^{n - 1}}} \right)\mathcal{G}\left( x \right) + \mathcal{G}\left( x \right)\phi \left( {{x^{n - 1}}} \right) + \varphi \left( x \right)\mathcal{G}\left( {{x^{n - 1}}} \right), 2 𝒢 ( x n ) = 𝒢 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) D ( x ) + 𝒟 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒟 ( x n - 1 ) , 2\mathcal{G}\left( {{x^n}} \right) = \mathcal{G}\left( {{x^{n - 1}}} \right)\phi \left( x \right) + \varphi \left( {{x^{n - 1}}} \right)\mathcal{D}\left( x \right) + \mathcal{D}\left( x \right)\phi \left( {{x^{n - 1}}} \right) + \varphi \left( x \right)\mathcal{D}\left( {{x^{n - 1}}} \right), for all x ∈ ℛ and some fixed integer n ≥ 2, then 𝒟 and 𝒢 are (ϕ, φ)- derivations under some torsion restriction. Finally, we apply these purely ring theoretic results to semi-simple Banach algebras.


2015 ◽  
Vol 65 (6) ◽  
Author(s):  
Maja Fos̆ner

AbstractIn this paper we prove the following result. Let R be a 2-torsion free semiprime ring and let f : R → R be an additive mapping satisfying the relation f(x)x


ISRN Algebra ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
O. H. Ezzat

We introduce the following notion. Let ℕ0 be the set of all nonnegative integers and let D=(di)i∈ℕ0 be a family of additive mappings of a *-ring R such that d0=idR; D is called a Jordan higher *-derivation (resp., a Jordan higher *-derivation) of R if dn(x2)=∑i+j=n‍di(x)dj(x*i) (resp., dn(xyx)=∑i+j+k=n‍di(x)dj(y*i)dk(x*i+j)) for all x,y∈R and each n∈ℕ0. It is shown that the notions of Jordan higher *-derivations and Jordan triple higher *-derivations on a 6-torsion free semiprime *-ring are coincident.


2020 ◽  
pp. 77-83
Author(s):  
Mohammad Shadab Khan ◽  
Mohd Arif Raza ◽  
Nadeemur Rehman

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If (d ( r ○ s)(r ○ s) + ( r ○ s) d ( r ○ s)n - d ( r ○ s))m for all r, s ϵ I, then R is commutative. (ii) If (d ( r ○ s)( r ○ s) + ( r ○ s) d ( r ○ s)n - d (r ○ s))m ϵ Z(R) for all r, s ϵ I, then R satisfies s4, the standard identity in four variables. Moreover, we also examine the case when R is a semiprime ring.


2019 ◽  
Vol 12 (05) ◽  
pp. 1950079
Author(s):  
Ahmad Al Khalaf ◽  
Iman Taha ◽  
Orest D. Artemovych ◽  
Abdullah Aljouiiee

Earlier D. A. Jordan, C. R. Jordan and D. S. Passman have investigated the properties of Lie rings Der [Formula: see text] of derivations in a commutative differentially prime rings [Formula: see text]. We study Lie rings Der [Formula: see text] in the non-commutative case and prove that if [Formula: see text] is a [Formula: see text]-torsion-free [Formula: see text]-semiprime ring, then [Formula: see text] is a semiprime Lie ring or [Formula: see text] is a commutative ring.


2015 ◽  
Vol 93 (2) ◽  
pp. 231-237 ◽  
Author(s):  
IRENA KOSI-ULBL ◽  
JOSO VUKMAN

In this paper we prove the following result: let$m,n\geq 1$be distinct integers, let$R$be an$mn(m+n)|m-n|$-torsion free semiprime ring and let$D:R\rightarrow R$be an$(m,n)$-Jordan derivation, that is an additive mapping satisfying the relation$(m+n)D(x^{2})=2mD(x)x+2nxD(x)$for$x\in R$. Then$D$is a derivation which maps$R$into its centre.


2003 ◽  
Vol 367 ◽  
pp. 213-224 ◽  
Author(s):  
Wu Jing ◽  
Pengtong Li ◽  
Shijie Lu

Sign in / Sign up

Export Citation Format

Share Document