On commuting additive mappings on semiprime rings

Author(s):  
Siriporn Lapuangkham ◽  
Utsanee Leerawat

The main purpose of this paper is to describe the structure of a pair of additive mappings that are commuting on a semiprime ring. Furthermore, we prove that the existence of different commuting epimorphisms on a prime ring forces the ring to be commutative. Finally, we characterize additive mappings, which act as homomorphisms or antihomomorphisms on a semiprime ring.

2020 ◽  
pp. 77-83
Author(s):  
Mohammad Shadab Khan ◽  
Mohd Arif Raza ◽  
Nadeemur Rehman

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If (d ( r ○ s)(r ○ s) + ( r ○ s) d ( r ○ s)n - d ( r ○ s))m for all r, s ϵ I, then R is commutative. (ii) If (d ( r ○ s)( r ○ s) + ( r ○ s) d ( r ○ s)n - d (r ○ s))m ϵ Z(R) for all r, s ϵ I, then R satisfies s4, the standard identity in four variables. Moreover, we also examine the case when R is a semiprime ring.


2021 ◽  
Vol 39 (4) ◽  
pp. 131-141
Author(s):  
Basudeb Dhara ◽  
Venus Rahmani ◽  
Shervin Sahebi

Let R be a prime ring with extended centroid C, I a non-zero ideal of R and n ≥ 1 a fixed integer. If R admits the generalized derivations H and G such that (H(xy)+G(yx))n= (xy ±yx) for all x,y ∈ I, then one ofthe following holds:(1) R is commutative;(2) n = 1 and H(x) = x and G(x) = ±x for all x ∈ R.Moreover, we examine the case where R is a semiprime ring. Finally, we apply the above result to non-commutative Banach algebras.


2006 ◽  
Vol 13 (03) ◽  
pp. 371-380 ◽  
Author(s):  
Nurcan Argaç

Let R be a ring and S a nonempty subset of R. A mapping f: R → R is called commuting on S if [f(x),x] = 0 for all x ∈ S. In this paper, firstly, we generalize the well-known result of Posner related to commuting derivations on prime rings. Secondly, we show that if R is a semiprime ring and I is a nonzero ideal of R, then a derivation d of R is commuting on I if one of the following conditions holds: (i) For all x, y ∈ I, either d([x,y]) = [x,y] or d([x,y]) = -[x,y]. (ii) For all x, y ∈ I, either d(x ◦ y) = x ◦ y or d(x ◦ y) = -(x ◦ y). (iii) R is 2-torsion free, and for all x, y ∈ I, either [d(x),d(y)] = d([x,y]) or [d(x),d(y)] = d([y,x]). Furthermore, if d(I) ≠ {0}, then R has a nonzero central ideal. Finally, we introduce the notation of generalized biderivation and prove that every generalized biderivation on a noncommutative prime ring is a biderivation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bilal Ahmad Wani

Abstract Let ℛ be a semiprime ring with unity e and ϕ, φ be automorphisms of ℛ. In this paper it is shown that if ℛ satisfies 2 𝒟 ( x n ) = 𝒟 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) 𝒟 ( x ) + 𝒟 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒟 ( x n - 1 ) 2\mathcal{D}\left( {{x^n}} \right) = \mathcal{D}\left( {{x^{n - 1}}} \right)\phi \left( x \right) + \varphi \left( {{x^{n - 1}}} \right)\mathcal{D}\left( x \right) + \mathcal{D}\left( x \right)\phi \left( {{x^{n - 1}}} \right) + \varphi \left( x \right)\mathcal{D}\left( {{x^{n - 1}}} \right) for all x ∈ ℛ and some fixed integer n ≥ 2, then 𝒟 is an (ϕ, φ)-derivation. Moreover, this result makes it possible to prove that if ℛ admits an additive mappings 𝒟, Gscr; : ℛ → ℛ satisfying the relations 2 𝒟 ( x n ) = 𝒟 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) 𝒢 ( x ) + 𝒢 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒢 ( x n - 1 ) , 2\mathcal{D}\left( {{x^n}} \right) = \mathcal{D}\left( {{x^{n - 1}}} \right)\phi \left( x \right) + \varphi \left( {{x^{n - 1}}} \right)\mathcal{G}\left( x \right) + \mathcal{G}\left( x \right)\phi \left( {{x^{n - 1}}} \right) + \varphi \left( x \right)\mathcal{G}\left( {{x^{n - 1}}} \right), 2 𝒢 ( x n ) = 𝒢 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) D ( x ) + 𝒟 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒟 ( x n - 1 ) , 2\mathcal{G}\left( {{x^n}} \right) = \mathcal{G}\left( {{x^{n - 1}}} \right)\phi \left( x \right) + \varphi \left( {{x^{n - 1}}} \right)\mathcal{D}\left( x \right) + \mathcal{D}\left( x \right)\phi \left( {{x^{n - 1}}} \right) + \varphi \left( x \right)\mathcal{D}\left( {{x^{n - 1}}} \right), for all x ∈ ℛ and some fixed integer n ≥ 2, then 𝒟 and 𝒢 are (ϕ, φ)- derivations under some torsion restriction. Finally, we apply these purely ring theoretic results to semi-simple Banach algebras.


2015 ◽  
Vol 65 (6) ◽  
Author(s):  
Maja Fos̆ner

AbstractIn this paper we prove the following result. Let R be a 2-torsion free semiprime ring and let f : R → R be an additive mapping satisfying the relation f(x)x


Author(s):  
Basudeb Dhara

LetRbe a ring with centerZandIa nonzero ideal ofR. An additive mappingF:R→Ris called a generalized derivation ofRif there exists a derivationd:R→Rsuch thatF(xy)=F(x)y+xd(y)for allx,y∈R. In the present paper, we prove that ifF([x,y])=±[x,y]for allx,y∈IorF(x∘y)=±(x∘y)for allx,y∈I, then the semiprime ringRmust contains a nonzero central ideal, providedd(I)≠0. In caseRis prime ring,Rmust be commutative, providedd≠0. The cases (i)F([x,y])±[x,y]∈Zand (ii)F(x∘y)±(x∘y)∈Zfor allx,y∈Iare also studied.


2010 ◽  
Vol 7 (4) ◽  
pp. 1426-1431
Author(s):  
Baghdad Science Journal

The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .


2013 ◽  
Vol 56 (3) ◽  
pp. 584-592 ◽  
Author(s):  
Pao-Kuei Liau ◽  
Cheng-Kai Liu

Abstract. Let R be a semiprime ring with center Z(R). For x, y ∊ R, we denote by [x, y] = xy – yx the commutator of x and y. If σ is a non-identity automorphism of R such thatfor all x ∊ R, where n0, n1, n2, … nk are fixed positive integers, then there exists a map μ: R → Z(R) such that σ(x) = x + μ(x) for all x ∊ R. In particular, when R is a prime ring, R is commutative.


ISRN Algebra ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
O. H. Ezzat

We introduce the following notion. Let ℕ0 be the set of all nonnegative integers and let D=(di)i∈ℕ0 be a family of additive mappings of a *-ring R such that d0=idR; D is called a Jordan higher *-derivation (resp., a Jordan higher *-derivation) of R if dn(x2)=∑i+j=n‍di(x)dj(x*i) (resp., dn(xyx)=∑i+j+k=n‍di(x)dj(y*i)dk(x*i+j)) for all x,y∈R and each n∈ℕ0. It is shown that the notions of Jordan higher *-derivations and Jordan triple higher *-derivations on a 6-torsion free semiprime *-ring are coincident.


Author(s):  
Najat Muthana ◽  
◽  
Asma Ali ◽  
Kapil Kumar

Sign in / Sign up

Export Citation Format

Share Document