Cartoon Character Recognition Using Concentric Multi-Region Histograms of Oriented Gradients

2012 ◽  
Vol 132 (11) ◽  
pp. 1847-1854 ◽  
Author(s):  
Weihan Sun ◽  
Koichi Kise
2015 ◽  
Vol 4 (2) ◽  
pp. 74-94
Author(s):  
Pawan Kumar Singh ◽  
Ram Sarkar ◽  
Mita Nasipuri

Script identification is an appealing research interest in the field of document image analysis during the last few decades. The accurate recognition of the script is paramount to many post-processing steps such as automated document sorting, machine translation and searching of text written in a particular script in multilingual environment. For automatic processing of such documents through Optical Character Recognition (OCR) software, it is necessary to identify different script words of the documents before feeding them to the OCR of individual scripts. In this paper, a robust word-level handwritten script identification technique has been proposed using texture based features to identify the words written in any of the seven popular scripts namely, Bangla, Devanagari, Gurumukhi, Malayalam, Oriya, Telugu, and Roman. The texture based features comprise of a combination of Histograms of Oriented Gradients (HOG) and Moment invariants. The technique has been tested on 7000 handwritten text words in which each script contributes 1000 words. Based on the identification accuracies and statistical significance testing of seven well-known classifiers, Multi-Layer Perceptron (MLP) has been chosen as the final classifier which is then tested comprehensively using different folds and with different epoch sizes. The overall accuracy of the system is found to be 94.7% using 5-fold cross validation scheme, which is quite impressive considering the complexities and shape variations of the said scripts. This is an extended version of the paper described in (Singh et al., 2014).


1997 ◽  
Vol 9 (1-3) ◽  
pp. 58-77
Author(s):  
Vitaly Kliatskine ◽  
Eugene Shchepin ◽  
Gunnar Thorvaldsen ◽  
Konstantin Zingerman ◽  
Valery Lazarev

In principle, printed source material should be made machine-readable with systems for Optical Character Recognition, rather than being typed once more. Offthe-shelf commercial OCR programs tend, however, to be inadequate for lists with a complex layout. The tax assessment lists that assess most nineteenth century farms in Norway, constitute one example among a series of valuable sources which can only be interpreted successfully with specially designed OCR software. This paper considers the problems involved in the recognition of material with a complex table structure, outlining a new algorithmic model based on ‘linked hierarchies’. Within the scope of this model, a variety of tables and layouts can be described and recognized. The ‘linked hierarchies’ model has been implemented in the ‘CRIPT’ OCR software system, which successfully reads tables with a complex structure from several different historical sources.


Sign in / Sign up

Export Citation Format

Share Document