Practical Method for Transient Stability with Unbalanced Condition based on Symmetric Coordinates

2011 ◽  
Vol 131 (7) ◽  
pp. 550-556
Author(s):  
Shuhei Fujiwara ◽  
Yoshiyuki Kono ◽  
Masashi Kitayama ◽  
Tadahiro Goda
Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1802
Author(s):  
Xiaoming Mao ◽  
Junxian Chen

This paper deals with the modeling and simulation of induction motor loads in power system stability studies considering the influence of the negative-sequence components. A practical method for computing the dynamic behavior of an induction motor under asymmetric faults is proposed and implemented in MATLAB. The accuracy of the proposed method is verified through classical electromagnetic transient simulations using the PSCAD/EMTDC software package. Compared with the existing traditional transient stability simulations, the method increases a little computational burden yet achieves much better simulation accuracy under asymmetric faults.


Author(s):  
E.M. Waddell ◽  
J.N. Chapman ◽  
R.P. Ferrier

Dekkers and de Lang (1977) have discussed a practical method of realising differential phase contrast in a STEM. The method involves taking the difference signal from two semi-circular detectors placed symmetrically about the optic axis and subtending the same angle (2α) at the specimen as that of the cone of illumination. Such a system, or an obvious generalisation of it, namely a quadrant detector, has the characteristic of responding to the gradient of the phase of the specimen transmittance. In this paper we shall compare the performance of this type of system with that of a first moment detector (Waddell et al.1977).For a first moment detector the response function R(k) is of the form R(k) = ck where c is a constant, k is a position vector in the detector plane and the vector nature of R(k)indicates that two signals are produced. This type of system would produce an image signal given bywhere the specimen transmittance is given by a (r) exp (iϕ (r), r is a position vector in object space, ro the position of the probe, ⊛ represents a convolution integral and it has been assumed that we have a coherent probe, with a complex disturbance of the form b(r-ro) exp (iζ (r-ro)). Thus the image signal for a pure phase object imaged in a STEM using a first moment detector is b2 ⊛ ▽ø. Note that this puts no restrictions on the magnitude of the variation of the phase function, but does assume an infinite detector.


Sign in / Sign up

Export Citation Format

Share Document