scholarly journals Inequalities of Bernstein type for splines in $L_2(\mathbb{R})$ space

2021 ◽  
Vol 16 ◽  
pp. 21
Author(s):  
V.F. Babenko ◽  
S.A. Spektor

We obtain sharp inequality of Bernstein type in $L_2(\mathbb{R})$ space for non-periodic spline functions of degree $m$, of minimal defect, with equidistant knots.


1995 ◽  
Author(s):  
Eduardo P. Serrano


2019 ◽  
Vol 27 (1) ◽  
pp. 3
Author(s):  
E.V. Asadova ◽  
V.A. Kofanov

For given $n, r \in \mathbb{N}$; $p, A > 0$ and any fixed interval $[a,b] \subset \mathbb{R}$ we solve the extremal problem $\int\limits_a^b |x(t)|^q dt \rightarrow \sup$, $q \geqslant p$, over sets of trigonometric polynomials $T$ of order $\leqslant n$ and $2\pi$-periodic splines $s$ of order $r$ and minimal defect with knots at the points $k\pi / n$, $k \in \mathbb{Z}$, such that $\| T \| _{p, \delta} \leqslant A \| \sin n (\cdot) \|_{p, \delta} \leqslant A \| \varphi_{n,r} \|_{p, \delta}$, $\delta \in (0, \pi / n]$, where $\| x \|_{p, \delta} := \sup \{ \| x \|_{L_p[a,b]} \colon a, b \in \mathbb{R}, 0 < b - a < \delta\}$ and $\varphi_{n, r}$ is the $(2\pi / n)$-periodic spline of Euler of order $r$. In particular, we solve the same problem for the intermediate derivatives $x^{(k)}$, $k = 1, ..., r-1$, with $q \geqslant 1$.



2013 ◽  
Vol 21 ◽  
pp. 125
Author(s):  
V.A. Kofanov

We solve the analog of some problem of Erdös about the characterization of the non-periodic spline of order r and of minimal defect, with knots at the points $kh$, $k\in \mathbb{Z}$ and fixed uniform norm that has maximal arc lens over any fixed interval.



1972 ◽  
Vol 19 (2) ◽  
pp. 146-154 ◽  
Author(s):  
M. v. Golitschek


2019 ◽  
Vol 27 (1) ◽  
pp. 28
Author(s):  
K.A. Danchenko ◽  
V.A. Kofanov

We consider the Bojanov-Naidenov problem over the set $\sigma_{h,r}$ of all non-periodic splines $s$ of order $r$ and minimal defect with knots at the points $kh$, $k \in \mathbb{Z}$. More exactly, for given $n, r \in \mathbb{N}$; $p, A > 0$ and any fixed interval $[a, b] \subset \mathbb{R}$ we solve the following extremal problem $\int\limits_a^b |x(t)|^q dt \rightarrow \sup$, $q \geqslant p$, over the classes $\sigma_{h,r}^p(A) := \bigl\{ s(\cdot + \tau) \colon s \in \sigma_{h,r}, \| s \|_{p, \delta} \leqslant A \| \varphi_{\lambda, r} \|_{p, \delta}, \delta \in (0, h], \tau \in \mathbb{R} \bigr\}$, where $\| x \|_{p, \delta} := \sup \bigl\{ \| x \|_{L_p[a,b]} \colon a, b \in \mathbb{R}, 0 < b - a \leqslant \delta \bigr\}$, and $\varphi_{\lambda, r}$ is $(2\pi / \lambda)$-periodic spline of Euler of order $r$. In particularly, for $k = 1, ..., r - 1$ we solve the extremal problem $\int\limits_a^b |x^{(k)}(t)|^q dt \rightarrow \sup$, $q \geqslant 1$, over the classes $\sigma_{h,r}^p (A)$. Note that the problems (1) and (2) were solved earlier on the classes $\sigma_{h,r}(A, p) := \bigl\{ s(\cdot + \tau) \colon s \in \sigma_{h,r}, L(s)_p \leqslant AL(\varphi_{n,r})_p, \tau \in \mathbb{R} \bigr\}$, where $L(x)_p := \sup \bigl\{ \| x \|_{L_p[a, b]} \colon a, b \in \mathbb{R}, |x(t)| > 0, t \in (a, b) \bigr\}$. We prove that the classes $\sigma_{h,r}^p (A)$ are wider than the classes $\sigma_{h,r}(A,p)$. Similarly we solve the analog of Erdös problem about the characterisation of the spline $s \in \sigma_{h,r}^p(A)$ that has maximal arc length over fixed interval $[a, b] \subset \mathbb{R}$.



2013 ◽  
Vol 73 (20) ◽  
pp. 1-4
Author(s):  
Manprit Kaur ◽  
Arun Kumar


2012 ◽  
Vol 20 ◽  
pp. 18
Author(s):  
V.F. Babenko ◽  
V.A. Zontov

New sharp Bernstein type inequalities in the space $L_2(\mathbb{R})$ for the differences of non-periodic splines of order $m$ and minimal defect, having equidistant nodes, are obtained.



2013 ◽  
Vol 21 ◽  
pp. 26
Author(s):  
V.F. Babenko ◽  
V.A. Zontov

New sharp Bernstein type inequalities of different metrics in spaces of integrable functions for non-periodic splines of order m and minimal defect, having equidistant nodes, are obtained.



Author(s):  
Abdul-Rashid Ramazanov ◽  
V.G. Magomedova

For the function $f(x)=\exp(-x)$, $x\in [0,+\infty)$ on grids of nodes $\Delta: 0=x_0<x_1<\dots $ with $x_n\to +\infty$ we construct rational spline-functions such that $R_k(x,f, \Delta)=R_i(x,f)A_{i,k}(x)\linebreak+R_{i-1}(x, f)B_{i,k}(x)$ for $x\in[x_{i-1}, x_i]$ $(i=1,2,\dots)$ and $k=1,2,\dots$ Here $A_{i,k}(x)=(x-x_{i-1})^k/((x-x_{i-1})^k+(x_i-x)^k)$, $B_{i,k}(x)=1-A_{i,k}(x)$, $R_j(x,f)=\alpha_j+\beta_j(x-x_j)+\gamma_j/(x+1)$ $(j=1,2,\dots)$, $R_j(x_m,f)=f(x_m)$ при $m=j-1,j,j+1$; we take $R_0(x,f)\equiv R_1(x,f)$. Bounds for the convergence rate of $R_k(x,f, \Delta)$ with $f(x)=\exp(-x)$, $x\in [0,+\infty)$, are found.



Sign in / Sign up

Export Citation Format

Share Document