scholarly journals Moments method in problems of optimal control of nonlinear models of logistic type

2021 ◽  
Vol 16 ◽  
pp. 155
Author(s):  
S.V. Chernyshenko

We investigate the problem of optimal control of two nonlinear models of mathematical ecology: logistic model and model of development in adversary environment. We consider four statements of optimal control problem, two criteria of quality (quadratic and linear ones). The solution is obtained either analytically, or numerically, by iterative approximations method.

2020 ◽  
Vol 7 (3) ◽  
pp. 11-22
Author(s):  
VALERY ANDREEV ◽  
◽  
ALEXANDER POPOV

A reduced model has been developed to describe the time evolution of a discharge in an iron core tokamak, taking into account the nonlinear behavior of the ferromagnetic during the discharge. The calculation of the discharge scenario and program regime in the tokamak is formulated as an inverse problem - the optimal control problem. The methods for solving the problem are compared and the analysis of the correctness and stability of the control problem is carried out. A model of “quasi-optimal” control is proposed, which allows one to take into account real power sources. The discharge scenarios are calculated for the T-15 tokamak with an iron core.


Games ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Alexander Arguchintsev ◽  
Vasilisa Poplevko

This paper deals with an optimal control problem for a linear system of first-order hyperbolic equations with a function on the right-hand side determined from controlled bilinear ordinary differential equations. These ordinary differential equations are linear with respect to state functions with controlled coefficients. Such problems arise in the simulation of some processes of chemical technology and population dynamics. Normally, general optimal control methods are used for these problems because of bilinear ordinary differential equations. In this paper, the problem is reduced to an optimal control problem for a system of ordinary differential equations. The reduction is based on non-classic exact increment formulas for the cost-functional. This treatment allows to use a number of efficient optimal control methods for the problem. An example illustrates the approach.


Sign in / Sign up

Export Citation Format

Share Document