scholarly journals Asymptotics of $L_p$-error for adaptive approximation of $n$-variable functions by harmonic splines

2021 ◽  
Vol 19 ◽  
pp. 71
Author(s):  
T.Yu. Leskevich

For a twice continuously differentiable function, defined on $n$-dimensional unit cube, we obtain sharp asymptotics of $L_p$-error for approximation by harmonic splines, and construct the asymptotically optimal sequence of partitions.

1992 ◽  
Vol 46 (3) ◽  
pp. 479-495 ◽  
Author(s):  
Stephen Joe ◽  
David C. Hunt

A lattice rule is a quadrature rule used for the approximation of integrals over the s-dimensional unit cube. Every lattice rule may be characterised by an integer r called the rank of the rule and a set of r positive integers called the invariants. By exploiting the group-theoretic structure of lattice rules we determine the number of distinct lattice rules having given invariants. Some numerical results supporting the theoretical results are included. These numerical results are obtained by calculating the Smith normal form of certain integer matrices.


10.37236/1951 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Gnewuch

The extreme or unanchored discrepancy is the geometric discrepancy of point sets in the $d$-dimensional unit cube with respect to the set system of axis-parallel boxes. For $2\leq p < \infty$ we provide upper bounds for the average $L^p$-extreme discrepancy. With these bounds we are able to derive upper bounds for the inverse of the $L^\infty$-extreme discrepancy with optimal dependence on the dimension $d$ and explicitly given constants.


1966 ◽  
Vol 9 (05) ◽  
pp. 557-562 ◽  
Author(s):  
H. L. Abbott

For positive integral n let Cn denote the n-dimensional unit cube with vertices (δ1, δ2,…, δn) where δi = 0 or 1 for i=1, 2,…, n. Call two vertices of Cn adjacent if the distance between them is 1.


1984 ◽  
Vol 21 (4) ◽  
pp. 738-752 ◽  
Author(s):  
Peter Hall

Let n points be distributed independently within a k-dimensional unit cube according to density f. At each point, construct a k-dimensional sphere of content an. Let V denote the vacancy, or ‘volume' not covered by the spheres. We derive asymptotic formulae for the mean and variance of V, as n → ∞and an → 0. The formulae separate naturally into three cases, corresponding to nan → 0, nan → a (0 < a <∞) and nan →∞, respectively. We apply the formulae to derive necessary and sufficient conditions for V/E(V) → 1 in L2.


2020 ◽  
Vol 15 (2) ◽  
pp. 39-72
Author(s):  
Nathan Kirk

AbstractIn 1986, Proinov published an explicit lower bound for the diaphony of finite and infinite sequences of points contained in the d−dimensional unit cube [Proinov, P. D.:On irregularities of distribution, C. R. Acad. Bulgare Sci. 39 (1986), no. 9, 31–34]. However, his widely cited paper does not contain the proof of this result but simply states that this will appear elsewhere. To the best of our knowledge, this proof was so far only available in a monograph of Proinov written in Bulgarian [Proinov, P. D.: Quantitative Theory of Uniform Distribution and Integral Approximation, University of Plovdiv, Bulgaria (2000)]. The first contribution of our paper is to give a self contained version of Proinov’s proof in English. Along the way, we improve the explicit asymptotic constants implementing recent, and corrected results of [Hinrichs, A.—Markhasin, L.: On lower bounds for the ℒ2-discrepancy, J. Complexity 27 (2011), 127–132.] and [Hinrichs, A.—Larcher, G.: An improved lower bound for the ℒ2-discrepancy, J. Complexity 34 (2016), 68–77]. (The corrections are due to a note in [Hinrichs, A.—Larcher, G. An improved lower bound for the ℒ2-discrepancy, J. Complexity 34 (2016), 68–77].) Finally, as a main result, we use the method of Proinov to derive an explicit lower bound for the dyadic diaphony of finite and infinite sequences in a similar fashion.


Sign in / Sign up

Export Citation Format

Share Document