Uniform distribution theory
Latest Publications


TOTAL DOCUMENTS

89
(FIVE YEARS 35)

H-INDEX

3
(FIVE YEARS 1)

Published By Walter De Gruyter Gmbh

2309-5377

2021 ◽  
Vol 16 (1) ◽  
pp. 93-126
Author(s):  
Ladislav Mišík ◽  
Štefan Porubský ◽  
Oto Strauch

Abstract The higher-dimensional generalization of the weighted q-adic sum-of-digits functions sq,γ (n), n =0, 1, 2,..., covers several important cases of sequences investigated in the theory of uniformly distributed sequences, e.g., d-dimensional van der Corput-Halton or d-dimensional Kronecker sequences. We prove a necessary and sufficient condition for the higher-dimensional weighted q-adic sum-of-digits functions to be uniformly distributed modulo one in terms of a trigonometric product. As applications of our condition we prove some upper estimates of the extreme discrepancies of such sequences, and that the existence of distribution function g(x)= x implies the uniform distribution modulo one of the weighted q-adic sum-of-digits function sq,γ (n), n = 0, 1, 2,... We also prove the uniform distribution modulo one of related sequences h 1 sq, γ (n)+h 2 sq,γ (n +1), where h 1 and h 2 are integers such that h 1 + h 2 ≠ 0 and that the akin two-dimensional sequence sq,γ (n), sq,γ (n +1) cannot be uniformly distributed modulo one if q ≥ 3. The properties of the two-dimensional sequence sq,γ (n),s q,γ (n +1), n =0, 1, 2,..., will be instrumental in the proofs of the final section, where we show how the growth properties of the sequence of weights influence the distribution of values of the weighted sum-of-digits function which in turn imply a new property of the van der Corput sequence.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-40
Author(s):  
Lan Nguyen

Abstract In this paper, we classify all solutions with cyclic and semi-cyclic semigroup supports of the functional equations arising from multiplication of quantum integers with fields of coefficients of characteristic zero. This also solves completely the classification problem proposed by Melvyn Nathanson and Yang Wang concerning the solutions, with semigroup supports which are not prime subsemigroups of ℕ, to these functional equations for the case of rational field of coefficients. As a consequence, we obtain some results for other problems raised by Nathanson concerning maximal solutions and extension of supports of solutions to these functional equations in the case where the semigroup supports are not prime subsemigroups of ℕ.


2021 ◽  
Vol 16 (1) ◽  
pp. 53-70
Author(s):  
Samantha Fairchild ◽  
Max Goering ◽  
Christian Weiß

Abstract We provide an algorithm to approximate a finitely supported discrete measure μ by a measure νN corresponding to a set of N points so that the total variation between μ and νN has an upper bound. As a consequence if μ is a (finite or infinitely supported) discrete probability measure on [0, 1] d with a sufficient decay rate on the weights of each point, then μ can be approximated by νN with total variation, and hence star-discrepancy, bounded above by (log N)N− 1. Our result improves, in the discrete case, recent work by Aistleitner, Bilyk, and Nikolov who show that for any normalized Borel measure μ, there exist finite sets whose star-discrepancy with respect to μ is at most ( log   N ) d − 1 2 N − 1 {\left( {\log \,N} \right)^{d - {1 \over 2}}}{N^{ - 1}} . Moreover, we close a gap in the literature for discrepancy in the case d =1 showing both that Lebesgue is indeed the hardest measure to approximate by finite sets and also that all measures without discrete components have the same order of discrepancy as the Lebesgue measure.


2021 ◽  
Vol 16 (1) ◽  
pp. 71-92
Author(s):  
Tsvetelina Petrova

Abstract In the present paper the author uses the function system Γ ℬ s constructed in Cantor bases to show upper bounds of the extreme and star discrepancy of an arbitrary net in the terms of the trigonometric sum of this net with respect to the functions of this system. The obtained estimations are inequalities of the type of Erdős-Turán-Koksma. These inequalities are very suitable for studying of nets constructed in the same Cantor system.


2021 ◽  
Vol 16 (1) ◽  
pp. 41-52
Author(s):  
Henry H. Kim

Abstract In a family of Sn -fields (n ≤ 5), we show that except for a density zero set, the lower and upper bounds of the Euler-Kronecker constants are −(n − 1) log log dK + O(log log log dK ) and loglog dK + O(log log log dK ), resp., where dK is the absolute value of the discriminant of a number field K.


2020 ◽  
Vol 15 (2) ◽  
pp. 39-72
Author(s):  
Nathan Kirk

AbstractIn 1986, Proinov published an explicit lower bound for the diaphony of finite and infinite sequences of points contained in the d−dimensional unit cube [Proinov, P. D.:On irregularities of distribution, C. R. Acad. Bulgare Sci. 39 (1986), no. 9, 31–34]. However, his widely cited paper does not contain the proof of this result but simply states that this will appear elsewhere. To the best of our knowledge, this proof was so far only available in a monograph of Proinov written in Bulgarian [Proinov, P. D.: Quantitative Theory of Uniform Distribution and Integral Approximation, University of Plovdiv, Bulgaria (2000)]. The first contribution of our paper is to give a self contained version of Proinov’s proof in English. Along the way, we improve the explicit asymptotic constants implementing recent, and corrected results of [Hinrichs, A.—Markhasin, L.: On lower bounds for the ℒ2-discrepancy, J. Complexity 27 (2011), 127–132.] and [Hinrichs, A.—Larcher, G.: An improved lower bound for the ℒ2-discrepancy, J. Complexity 34 (2016), 68–77]. (The corrections are due to a note in [Hinrichs, A.—Larcher, G. An improved lower bound for the ℒ2-discrepancy, J. Complexity 34 (2016), 68–77].) Finally, as a main result, we use the method of Proinov to derive an explicit lower bound for the dyadic diaphony of finite and infinite sequences in a similar fashion.


2020 ◽  
Vol 15 (2) ◽  
pp. 1-8
Author(s):  
Francesco Amoroso ◽  
Moubinool Omarjee

AbstractLet α be an irrational real number; the behaviour of the sum SN (α):= (−1)[α] +(−1)[2α] + ··· +(−1)[Nα] depends on the continued fraction expansion of α/2. Since the continued fraction expansion of \sqrt 2 /2 has bounded partial quotients, {S_N}\left( {\sqrt 2 } \right) = O\left( {\log \left( N \right)} \right) and this bound is best possible. The partial quotients of the continued fraction expansion of e grow slowly and thus {S_N}\left( {2e} \right) = O\left( {{{\log {{\left( N \right)}^2}} \over {\log \,\log {{\left( N \right)}^2}}}} \right), again best possible. The partial quotients of the continued fraction expansion of e/2 behave similarly as those of e. Surprisingly enough 1188.


2020 ◽  
Vol 15 (2) ◽  
pp. 93-98
Author(s):  
Vsevolod F. Lev

AbstractLet p ≥ 3 be a prime, S \subseteq \mathbb{F}_p^2 a nonempty set, and w:\mathbb{F}_p^2 \to R a function with supp w = S. Applying an uncertainty inequality due to András Bíró and the present author, we show that there are at most {1 \over 2}\left| S \right| directions in \mathbb{F}_p^2 such that for every line l in any of these directions, one has \sum\limits_{z \in l} {w\left( z \right) = {1 \over p}\sum\limits_{z \in \mathbb{F}_p^2} {w\left( z \right),} } except if S itself is a line and w is constant on S (in which case all, but one direction have the property in question). The bound {1 \over 2}\left| S \right| is sharp.As an application, we give a new proof of a result of Rédei-Megyesi about the number of directions determined by a set in a finite affine plane.


2020 ◽  
Vol 15 (2) ◽  
pp. 99-112
Author(s):  
Fabrizio Durante ◽  
Juan Fernández-Sánchez ◽  
Claudio Ignazzi ◽  
Wolfgang Trutschnig

AbstractMotivated by the maximal average distance of uniformly distributed sequences we consider some extremal problems for functionals of type {\mu _C} \mapsto \int_0^1 {{{\int_0^1 {Fd} }_\mu }_C,} where µC is a copula measure and F is a Riemann integrable function on [0, 1]2 of a specific type. Such problems have been considered in [4] and are of interest in the study of limit points of two uniformly distributed sequences.


2020 ◽  
Vol 15 (2) ◽  
pp. 9-22
Author(s):  
Pierre Popoli

AbstractBoth the Thue–Morse and Rudin–Shapiro sequences are not suitable sequences for cryptography since their expansion complexity is small and their correlation measure of order 2 is large. These facts imply that these sequences are highly predictable despite the fact that they have a large maximum order complexity. Sun and Winterhof (2019) showed that the Thue–Morse sequence along squares keeps a large maximum order complexity. Since, by Christol’s theorem, the expansion complexity of this rarefied sequence is no longer bounded, this provides a potentially better candidate for cryptographic applications. Similar results are known for the Rudin–Shapiro sequence and more general pattern sequences. In this paper we generalize these results to any polynomial subsequence (instead of squares) and thereby answer an open problem of Sun and Winterhof. We conclude this paper by some open problems.


Sign in / Sign up

Export Citation Format

Share Document