A Novel Decomposition Method for Two-stage Stochastic Port Management Problem

2021 ◽  
Vol 09 (01) ◽  
pp. 19-25
2015 ◽  
Vol 137 (6) ◽  
Author(s):  
W. Li ◽  
S. X. Liu ◽  
Z. H. Fu ◽  
H. D. Shi ◽  
Y. L. Xie

In this study, a novel inexact two-stage stochastic robust-compensation programming (ITSP-RC) model is developed for CO2 emission reduction management under uncertainties. This model is attempted to integrate ITSP and stochastic RC programming into a general framework and apply the ITSP-RC for power management and CO2 emission reduction management, such that the developed model can tackle uncertainties described in terms of interval values and probability distributions over a two-stage context. Moreover, it can reflect dynamic and randomness of the energy systems during the planning horizon. The developed method has been applied to a case to solve CO2 emission management problem in electric supply environmental management. A number of scenarios corresponding to different adoption rate levels of carbon capture, utilization, and storage technology are examined. With the RC programming, regional energy systems would have a stable financial budget. The result suggests that the methodology is applicable for reflecting complexities of large-scale energy management systems and addressing CO2 emissions reduction issue with the planning period.


1963 ◽  
Vol 95 (5) ◽  
pp. 525-536 ◽  
Author(s):  
Kenneth E. F. Watt

AbstractMany problems in the management of renewable natural resources are extremum problems: we wish to maximize fish yield from a lake, tree yield from a forest, or minimize insect pest survival, for example. Such problems can be handled better by dynamic programming than classical analysis, because of the large number and the complex nature of constraints imposed on such systems. However, a priori arguments and analysis of biological time series show that such renewable natural resources do not constitute Markov processes, since state changes from t to t + 1 are dependent on the state: at t − 1 as well as the state at t. Therefore, before making a decision about the optimal strategy at t, we must explore the future consequences of the strategy at t + 1 and t + 2. This paper reports computer experiments on strategy evaluation procedures, using dynamic programming and modified dynamic programming with two-stage “look-ahead”. The data used to develop the model came from 60 years of observations on weather conditions and insect pest populations at Magdeburg, Germany. The general conclusion from this work is that the selection of most appropriate strategy for a biological management problem should he determined by the structure of the problem. Sometimes, “one-stage look-ahead” gave the lowest value for the criterion function, and sometimes “two-stage look-ahead” was optimal. The two types of programming always yielded lower cumulative defoliation than the method now used: killing as many pests as feasible whenever “pest” densities are reached.


Sign in / Sign up

Export Citation Format

Share Document