scholarly journals Silicon-based Anode Materials Applied in High Specific Energy Lithium-ion Batteries: a Review

2019 ◽  
Vol 34 (4) ◽  
pp. 349 ◽  
Author(s):  
Yi TAN ◽  
Kai WANG
2021 ◽  
Vol 2 (6) ◽  
pp. 2170015
Author(s):  
Chengzhi Zhang ◽  
Fei Wang ◽  
Jian Han ◽  
Shuo Bai ◽  
Jun Tan ◽  
...  

2021 ◽  
Vol 1036 ◽  
pp. 35-44
Author(s):  
Ling Fang Ruan ◽  
Jia Wei Wang ◽  
Shao Ming Ying

Silicon-based anode materials have been widely discussed by researchers because of its high theoretical capacity, abundant resources and low working voltage platform,which has been considered to be the most promising anode materials for lithium-ion batteries. However,there are some problems existing in the silicon-based anode materials greatly limit its wide application: during the process of charge/discharge, the materials are prone to about 300% volume expansion, which will resultin huge stress-strain and crushing or collapse on the anods; in the process of lithium removal, there is some reaction between active material and current collector, which creat an increase in the thickness of the solid phase electrolytic layer(SEI film); during charging and discharging, with the increase of cycle times, cracks will appear on the surface of silicon-based anode materials, which will cause the batteries life to decline. In order to solve these problems, firstly, we summarize the design of porous structure of nanometer sized silicon-based materials and focus on the construction of three-dimensional structural silicon-based materials, which using natural biomass, nanoporous carbon and metal organic framework as structural template. The three-dimensional structure not only increases the channel of lithium-ion intercalation and the rate of ion intercalation, but also makes the structure more stable than one-dimensional or two-dimensional. Secondly, the Si/C composite, SiOx composite and alloying treatment can improve the volume expansion effection, increase the rate of lithium-ion deblocking and optimize the electrochemical performance of the material. The composite materials are usually coated with elastic conductive materials on the surface to reduce the stress, increase the conductivity and improve the electrochemical performance. Finally, the future research direction of silicon-based anode materials is prospected.


2021 ◽  
Vol 66 (10) ◽  
pp. 1170-1186
Author(s):  
Xuerui Yang ◽  
Ningbo Xu ◽  
Gaopan Liu ◽  
Yue Zou ◽  
Zhongru Zhang ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 6660-6666 ◽  
Author(s):  
Jun Wang ◽  
Shengli Li ◽  
Yi Zhao ◽  
Juan Shi ◽  
Lili Lv ◽  
...  

With a high specific capacity (4200 mA h g−1), silicon based materials have become the most promising anode materials in lithium-ions batteries.


2019 ◽  
Vol 7 (8) ◽  
pp. 3874-3881 ◽  
Author(s):  
Min Cui ◽  
Lin Wang ◽  
Xianwei Guo ◽  
Errui Wang ◽  
Yubo Yang ◽  
...  

A mass-produced and low-cost hierarchical mesoporous/macroporous silicon-based composite material with an ample porous structure and dual carbon protective layers has been rationally designed and constructed. The Si/SiO2@C composite anode materials for LIBs show enhanced electrochemical properties.


2020 ◽  
Vol 10 (2) ◽  
pp. 5076-5084

In this work the concentration of Li/Li+ has applied for increasing the efficiency of Lithium ion batteries. Various numbers of lithium and lithium cations have been simulated as diffused atoms in graphite as anode materials. We have found the structure of (G// (h-BN) //G) can be to improve the voltage and electrical transport in anodic sheets-based LIBs. This system could also be assembled into free-standing electrodes without any binder or current collector, which will lead to increased specific energy density for the overall battery design. Therefore, the above modification of BN-G sheet and designing of this kind structure provide strategies for improving the performance of material based anodes in LIBs.


2021 ◽  
pp. 2100009
Author(s):  
Chengzhi Zhang ◽  
Fei Wang ◽  
Jian Han ◽  
Shuo Bai ◽  
Jun Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document