Identification and inheritance of leaf rust resistance genes in the wheat cultivar ‘Marvdasht’

2011 ◽  
Vol 39 (1) ◽  
pp. 67-76
Author(s):  
F. Rafiei Boroujeni ◽  
A. Arzani ◽  
F. Afshari ◽  
M. Torabi
Euphytica ◽  
2015 ◽  
Vol 206 (1) ◽  
pp. 135-147 ◽  
Author(s):  
M. A. Darino ◽  
M. J. Dieguez ◽  
D. Singh ◽  
L. R. Ingala ◽  
M. F. Pergolesi ◽  
...  

2005 ◽  
Vol 95 (7) ◽  
pp. 773-778 ◽  
Author(s):  
L. M. Oelke ◽  
J. A. Kolmer

Alsen is a recently released spring wheat cultivar that has been widely grown in the United States because it has resistance to Fusarium head blight and leaf rust caused by Puccinia triticina. Norm is a high yielding wheat cultivar that has been very resistant to leaf rust since it was released. Alsen and Norm were genetically examined to determine the number and identity of the leaf rust resistance genes present in both wheats. The two cultivars were crossed with leaf rust susceptible cv. Thatcher and F1 plants were backcrossed to Thatcher. Eighty one and seventy three BCF1 of Thatcher times; Alsen and Thatcher × Norm respectively, were selfed to obtain BCF2 families. The BCF2 families were tested as seedlings with different isolates of P. triticina that differed for virulence to specific leaf rust resistance genes. The BCF2 families that lacked seedling resistance were also tested as adult plants in greenhouse tests and in a field rust nursery plot. Segregation of BCF2 families indicated that Alsen had seedling genes Lr2a, Lr10, and Lr23 and adult plant genes Lr13 and Lr34. Norm was determined to have seedling genes Lr1, Lr10, Lr16, and Lr23 and adult plant genes Lr13 and Lr34. The characterization of Lr23 in the segregating populations was complicated by the presence of a suppressor gene in Thatcher and the high temperature sensitivity of resistance expression for this gene. The effective leaf rust resistance in Alsen is due to the interaction of Lr13 and Lr23, with Lr34; and the effective leaf rust resistance in Norm is due to the interaction of Lr13, Lr16, and Lr23, with Lr34.


Crop Science ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 282-302 ◽  
Author(s):  
Matthew J. Martin ◽  
Oswaldo Chicaiza ◽  
Juan C. Caffarel ◽  
Ahmad H. Sallam ◽  
Arnis Druka ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
pp. 327-334 ◽  
Author(s):  
Agnieszka Tomkowiak ◽  
Roksana Skowrońska ◽  
Alicja Buda ◽  
Danuta Kurasiak-Popowska ◽  
Jerzy Nawracała ◽  
...  

AbstractTen leading wheat cultivars originating from the Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute (Poland) and the Department of Gene Bank (Czech Republic) were used to establish a field experiment in 2017 and 2018 at the Dłoń Experimental Farm. The analyzed wheat genotypes were characterized by diversified field resistance to leaf rust. Jubilatka, Thatcher and Sparta were the most resistant cultivars in field conditions in both 2017 and 2018. The aim of the work was to identify the Lr11, L13, Lr16 and Lr26 genes encoding resistance to leaf rust using molecular SSR markers (wmc24, wmc261, Xgwm630, Xwmc764 and P6M12) and to develop multiplex PCR conditions to accelerate identification of these genes. Markers of three leaf rust resistance genes have been identified simultaneously in these cultivars. Jubilatka, Thatcher and Sparta cultivars may serve as a good source of the analyzed leaf rust resistance genes. In addition, multiplex PCR conditions have been developed for the simultaneous identification of the Lr11 and Lr16 and Lr11 and Lr26 gene pairs.


2007 ◽  
Vol 126 (5) ◽  
pp. 458-463 ◽  
Author(s):  
J. A. Mammadov ◽  
W. S. Brooks ◽  
C. A. Griffey ◽  
M. A. Saghai Maroof

Sign in / Sign up

Export Citation Format

Share Document