adult plant
Recently Published Documents


TOTAL DOCUMENTS

826
(FIVE YEARS 211)

H-INDEX

59
(FIVE YEARS 6)

Plant Disease ◽  
2022 ◽  
Author(s):  
Gensheng Zhang ◽  
Wei Liu ◽  
Xiangrui Cheng ◽  
Lin Wang ◽  
Xiaxia Tian ◽  
...  

In 2017, a new race (TSA-6) of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici, virulent to resistance gene Yr5 were detected in China. However, whether Chinese wheat cultivars are resistant to the new races was unknown. In this study, two isolates (TSA-6 and TSA-9) with virulence to Yr5 were tested on other wheat Yr gene lines for their avirulence/virulence patterns and used, together with prevalent races CYR32 and CYR34 without the Yr5 virulence, to evaluate 165 major Chinese wheat cultivars for their reactions. Isolates TSA-6 and TSA-9 had similar but different virulence spectra, and therefore should be considered as two different races. Their avirulent/virulence patterns were remarkably different from that of CYR34 but quite similar to that of CYR32. Of the 165 wheat cultivars, 21 had all-stage resistance to TSA-6, 34 to TSA-9, and 20 to both races. Adult-plant resistance (APR) was detected in 35 cultivars to TSA-6 and 27 to TSA-9, but only 3 cultivars showed APR to both new races. Slow rusting resistance was observed in 24 cultivars to TSA-6 and of 33 to TSA-9. Analysis of variance (ANOVA) of disease index indicated a significant difference among cultivars, but not among the four races. Based on the molecular marker data, a low percentage of wheat cultivars carried Yr5, Yr7, Yr10, Yr15, Yr26, and/or YrSP. As TSA-6 and TSA-9 can be a serious threat to wheat production in China, monitoring TSA-6, TSA-9, and other races are continually needed.


2022 ◽  
Vol 12 ◽  
Author(s):  
Firdissa E. Bokore ◽  
Ron E. Knox ◽  
Colin W. Hiebert ◽  
Richard D. Cuthbert ◽  
Ron M. DePauw ◽  
...  

The hexaploid spring wheat cultivar, Carberry, was registered in Canada in 2009, and has since been grown over an extensive area on the Canadian Prairies. Carberry has maintained a very high level of leaf rust (Puccinia triticina Eriks.) resistance since its release. To understand the genetic basis of Carberry’s leaf rust resistance, Carberry was crossed with the susceptible cultivar, Thatcher, and a doubled haploid (DH) population of 297 lines was generated. The DH population was evaluated for leaf rust in seven field environments at the adult plant stage. Seedling and adult plant resistance (APR) to multiple virulence phenotypes of P. triticina was evaluated on the parents and the progeny population in controlled greenhouse studies. The population was genotyped with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, and quantitative trait loci (QTL) analysis was performed. The analysis using field leaf rust response indicated that Carberry contributed nine QTL located on chromosomes 1B, 2B (2 loci), 2D, 4A, 4B, 5A, 5B, and 7D. The QTL located on 1B, 2B, 5B, and 7D chromosomes were observed in two or more environments, whereas the remainder were detected in single environments. The resistance on 1B, detected in five environments, was attributed to Lr46 and on 7D, detected in seven environments to Lr34. The first 2B QTL corresponded with the adult plant gene, Lr13, while the second QTL corresponded with Lr16. The seedling analysis showed that Carberry carries Lr2a, Lr16, and Lr23. Five epistatic effects were identified in the population, with synergistic interactions being observed for Lr34 with Lr46, Lr16, and Lr2a. The durable rust resistance of Carberry is attributed to Lr34 and Lr46 in combination with these other resistance genes, because the resistance has remained effective even though the P. triticina population has evolved virulent to Lr2a, Lr13, Lr16, and Lr23.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sandra Rollar ◽  
Manuel Geyer ◽  
Lorenz Hartl ◽  
Volker Mohler ◽  
Frank Ordon ◽  
...  

Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fangjie Yao ◽  
Fangnian Guan ◽  
Luyao Duan ◽  
Li Long ◽  
Hao Tang ◽  
...  

Stripe rust (caused by Puccinia striiformis f. sp. tritici) is one of the most severe diseases affecting wheat production. The disease is best controlled by developing and growing resistant cultivars. Chinese wheat (Triticum aestivum) landraces have excellent resistance to stripe rust. The objectives of this study were to identify wheat landraces with stable resistance and map quantitative trait loci (QTL) for resistance to stripe rust from 271 Chinese wheat landraces using a genome-wide association study (GWAS) approach. The landraces were phenotyped for stripe rust responses at the seedling stage with two predominant Chinese races of P. striiformis f. sp. tritici in a greenhouse and the adult-plant stage in four field environments and genotyped using the 660K wheat single-nucleotide polymorphism (SNP) array. Thirteen landraces with stable resistance were identified, and 17 QTL, including eight associated to all-stage resistance and nine to adult-plant resistance, were mapped on chromosomes 1A, 1B, 2A, 2D, 3A, 3B, 5A, 5B, 6D, and 7A. These QTL explained 6.06–16.46% of the phenotypic variation. Five of the QTL, QYrCL.sicau-3AL, QYrCL.sicau-3B.4, QYrCL.sicau-3B.5, QYrCL.sicau-5AL.1 and QYrCL.sicau-7AL, were likely new. Five Kompetitive allele specific PCR (KASP) markers for four of the QTL were converted from the significant SNP markers. The identified wheat landraces with stable resistance to stripe rust, significant QTL, and KASP markers should be useful for breeding wheat cultivars with durable resistance to stripe rust.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Jerzy H. Czembor ◽  
Elzbieta Czembor ◽  
Radoslaw Suchecki ◽  
Nathan S. Watson-Haigh

Rusts and powdery mildew are diseases that have a major effect on yield loss in barley. Adult Plant Resistance (APR) is a post-seedling resistance mechanism and its expression is influenced by many factors, including host susceptibility and weather conditions, as well as the timing and severity of disease outbreaks. There are two mechanisms associated with APR: non-hypersensitive and minor gene APR. In this study, 431 European barley accessions were evaluated phenotypically over 2 years (2018–2019) under field conditions, scoring APR to powdery mildew (PM), barley brown rust (BBR), and stem rust (SR), and genotypically using DArTseq. Accessions were grouped into sub-collections by cultivation period (group A—cultivated prior 1985, B—cultivated after 1985, and C—Polish landraces) and by European country of origin or European region. GWAS was conducted for PM, BBR, and SR, and scored at the heading (HA) and milky-waxy (MW) seed stages in 2019 and maximum scores across all replicates were obtained 2018–2019. Disease severity was sufficient to differentiate the collection according to cultivation time and country of origin and to determine SNPs. Overall, the GWAS analysis identified 73 marker–trait associations (MTAs) with these traits. For PM resistance, we identified five MTAs at both the HA stage and when considering the maximal disease score across both growth stages and both years. One marker (3432490-28-T/C) was shared between these two traits; it is located on chromosome 4H. For BBR resistance, six MTAs at HA and one MTA at the MW stage in 2019 and seven MTAs, when considering the maximal disease score across both growth stages and both years, were identified. Of the 48 markers identified as being associated with SR resistance, 12 were on chromosome 7H, 1 was in the telomeric region of the short arm, and 7 were in the telomeric region of the long arm. Rpg1 has previously been mapped to 7HS. The results of this study will be used to create a Polish Gene Bank platform for precise breeding programs. The resistant genotypes and MTA markers will serve as a valuable resource for breeding for PM, BBR, and SR resistance in barley.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2585
Author(s):  
Amira M. I. Mourad ◽  
Mohamed A. Abou-Zeid ◽  
Shamseldeen Eltaher ◽  
P. Stephen Baenziger ◽  
Andreas Börner

Wheat stripe rust (caused by Puccinia striiformis f. sp. tritici) is a major disease that damages wheat plants and affects wheat yield all over the world. In recent years, stripe rust became a major problem that affects wheat yield in Egypt. New races appeared and caused breakdowns in the resistant genotypes. To improve resistance in the Egyptian genotypes, new sources of resistance are urgently needed. In the recent research, a set of 95 wheat genotypes collected from 19 countries, including Egypt, were evaluated for their resistance against the Egyptian race(s) of stripe rust under field conditions in the two growing seasons 2018/2019 and 2019/2020. A high genetic variation was found among the tested genotypes. Single marker analysis was conducted using a subset of 71 genotypes and 424 diversity array technology (DArT) markers, well distributed across the genome. Out of the tested markers, 13 stable markers were identified that were significantly associated with resistance in both years (p-value ≤ 0.05). By using the sequence of the DArT markers, the chromosomal position of the significant DArT markers was detected, and nearby gene models were identified. Two markers on chromosomes 5A and 5B were found to be located within gene models functionally annotated with disease resistance in plants. These two markers could be used in marker-assisted selection for stripe rust resistance under Egyptian conditions. Two German genotypes were carrying the targeted allele of all the significant DArT markers associated with stripe rust resistance and could be used to improve resistance under Egyptian conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2545
Author(s):  
Ridha Boudiar ◽  
Alejandra Cabeza ◽  
Miriam Fernández-Calleja ◽  
Antonio Pérez-Torres ◽  
Ana M. Casas ◽  
...  

Roots are important for crop adaptation, particularly in dryland environments. We evaluated root development of 37 durum wheat genotypes (modern cultivars and landraces) in the field at the adult plant stage, through a shovelomics approach. Large genotypic variability was found for root traits. Differences between the landraces and modern cultivars were the main driver of this variation, with landraces showing higher plant vigor for roots and shoots. Nonetheless, genotypic variation within groups was also observed, related to different models of root growth, largely independent of total root length. These two models represented root growth were oriented either to occupy more soil volume, or to occupy less soil volume with increased density. The field results were then compared with root data previously collected in seedlings using a filter paper-based method, to assess whether early root anticipated adult root features. Field plants showed a narrower root angle than seedlings. In particular, landraces presented a narrower root angle than cultivars, but only at seedling stage. Potentially useful correlations were found between the two growth stages for root length and number.


Sign in / Sign up

Export Citation Format

Share Document