rust resistance
Recently Published Documents


TOTAL DOCUMENTS

2067
(FIVE YEARS 394)

H-INDEX

73
(FIVE YEARS 8)

2022 ◽  
Vol 43 (1) ◽  
pp. 147-160
Author(s):  
V. Gupta ◽  
◽  
M. Kumar ◽  
V. Singh ◽  
R.N. Sheokand ◽  
...  

Aim: To screen wheat populations derived from cross DBW17 × WH1105 for loci imparting yellow rust resistance and selection of plants using polymorphic SSRs. Methodology: The study for yellow rust resistance was carried out on two populations, i.e., BC1F2 and BC2F2. Stress was provided by planting infector rows between the blocks and by artificial inoculation using a mixture of races 46S102, 47S103 and 78S84 of stripe rust pathogen. DNA isolated from young leaves was checked for the presence of yellow rust resistance genes using gene specific primers. Results: Fifteen primers were found to be polymorphic among parents DBW17 and WH1105. Fifteen polymorphic SSR markers were dispersed over the wheat genome (AABBDD), with allele range 2-5. These polymorphic SSR markers were used to produce molecular diversity among progeny lines. Cluster analysis of parents and both the populations, showed that two parents were diverse genetically and in both backcrosses progeny lines resembled their respective recurrent parent. Single marker analysis using data revealed that primers on nine chromosomes were associated with grain yield per plant, other yield attributes and yellow rust resistance in both populations. Interpretation: This study showed that a linked marker like Xgwm582 could be a promising tool for breeding wheat with enhanced tolerance to yellow rust resistance. However, growth rates and biomass production provide reliable criteria for assessing the degree of yellow rust resistance and the ability of a plant to withstand it.


2022 ◽  
Vol 12 ◽  
Author(s):  
Firdissa E. Bokore ◽  
Ron E. Knox ◽  
Colin W. Hiebert ◽  
Richard D. Cuthbert ◽  
Ron M. DePauw ◽  
...  

The hexaploid spring wheat cultivar, Carberry, was registered in Canada in 2009, and has since been grown over an extensive area on the Canadian Prairies. Carberry has maintained a very high level of leaf rust (Puccinia triticina Eriks.) resistance since its release. To understand the genetic basis of Carberry’s leaf rust resistance, Carberry was crossed with the susceptible cultivar, Thatcher, and a doubled haploid (DH) population of 297 lines was generated. The DH population was evaluated for leaf rust in seven field environments at the adult plant stage. Seedling and adult plant resistance (APR) to multiple virulence phenotypes of P. triticina was evaluated on the parents and the progeny population in controlled greenhouse studies. The population was genotyped with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, and quantitative trait loci (QTL) analysis was performed. The analysis using field leaf rust response indicated that Carberry contributed nine QTL located on chromosomes 1B, 2B (2 loci), 2D, 4A, 4B, 5A, 5B, and 7D. The QTL located on 1B, 2B, 5B, and 7D chromosomes were observed in two or more environments, whereas the remainder were detected in single environments. The resistance on 1B, detected in five environments, was attributed to Lr46 and on 7D, detected in seven environments to Lr34. The first 2B QTL corresponded with the adult plant gene, Lr13, while the second QTL corresponded with Lr16. The seedling analysis showed that Carberry carries Lr2a, Lr16, and Lr23. Five epistatic effects were identified in the population, with synergistic interactions being observed for Lr34 with Lr46, Lr16, and Lr2a. The durable rust resistance of Carberry is attributed to Lr34 and Lr46 in combination with these other resistance genes, because the resistance has remained effective even though the P. triticina population has evolved virulent to Lr2a, Lr13, Lr16, and Lr23.


2021 ◽  
Author(s):  
Guotai Yu ◽  
Oadi Matny ◽  
Nicolas Champouret ◽  
Burkhard Steuernagel ◽  
Matthew J. Moscou ◽  
...  

Abstract The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. We developed a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and used positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which was also transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines showed high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance.


2021 ◽  
Vol 33 (1) ◽  
pp. 57
Author(s):  
H. M. P. S. Kumari ◽  
C. K. Weebadde ◽  
P. C. G. Bandaranayake ◽  
M. A. Pastor Corrales ◽  
R. G. A. S. Rajapakshe

2021 ◽  
Vol 12 ◽  
Author(s):  
Sandra Rollar ◽  
Manuel Geyer ◽  
Lorenz Hartl ◽  
Volker Mohler ◽  
Frank Ordon ◽  
...  

Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 20
Author(s):  
Mattia Fois ◽  
Andrea Bellucci ◽  
Marta Malinowska ◽  
Morten Greve ◽  
Anja Karine Ruud ◽  
...  

A population of 239 perennial ryegrass (Lolium perenne L.) genotypes was analyzed to identify marker-trait associations for crown rust (Puccinia coronata f. sp. lolii) and brown rust (Puccinia graminis f. sp. loliina) resistance. Phenotypic data from field trials showed a low correlation (r = 0.17) between the two traits. Genotypes were resequenced, and a total of 14,538,978 SNPs were used to analyze population structure, linkage disequilibrium (LD), and for genome-wide association study. The SNP heritability (h2SNP) was 0.4 and 0.8 for crown and brown rust resistance, respectively. The high-density SNP dataset allowed us to estimate LD decay with the highest possible precision to date for perennial ryegrass. Results showed a low LD extension with a rapid decay of r2 value below 0.2 after 520 bp on average. Additionally, QTL regions for both traits were detected, as well as candidate genes by applying Genome Complex Trait Analysis and Multi-marker Analysis of GenoMic Annotation. Moreover, two significant genes, LpPc6 and LpPl6, were identified for crown and brown rust resistance, respectively, when SNPs were aggregated to the gene level. The two candidate genes encode proteins with phosphatase activity, which putatively can be induced by the host to perceive, amplify and transfer signals to downstream components, thus activating a plant defense response.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2585
Author(s):  
Amira M. I. Mourad ◽  
Mohamed A. Abou-Zeid ◽  
Shamseldeen Eltaher ◽  
P. Stephen Baenziger ◽  
Andreas Börner

Wheat stripe rust (caused by Puccinia striiformis f. sp. tritici) is a major disease that damages wheat plants and affects wheat yield all over the world. In recent years, stripe rust became a major problem that affects wheat yield in Egypt. New races appeared and caused breakdowns in the resistant genotypes. To improve resistance in the Egyptian genotypes, new sources of resistance are urgently needed. In the recent research, a set of 95 wheat genotypes collected from 19 countries, including Egypt, were evaluated for their resistance against the Egyptian race(s) of stripe rust under field conditions in the two growing seasons 2018/2019 and 2019/2020. A high genetic variation was found among the tested genotypes. Single marker analysis was conducted using a subset of 71 genotypes and 424 diversity array technology (DArT) markers, well distributed across the genome. Out of the tested markers, 13 stable markers were identified that were significantly associated with resistance in both years (p-value ≤ 0.05). By using the sequence of the DArT markers, the chromosomal position of the significant DArT markers was detected, and nearby gene models were identified. Two markers on chromosomes 5A and 5B were found to be located within gene models functionally annotated with disease resistance in plants. These two markers could be used in marker-assisted selection for stripe rust resistance under Egyptian conditions. Two German genotypes were carrying the targeted allele of all the significant DArT markers associated with stripe rust resistance and could be used to improve resistance under Egyptian conditions.


Sign in / Sign up

Export Citation Format

Share Document