breeding lines
Recently Published Documents


TOTAL DOCUMENTS

1828
(FIVE YEARS 484)

H-INDEX

50
(FIVE YEARS 5)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261109
Author(s):  
Dil Thavarajah ◽  
Tristan J. Lawrence ◽  
Sarah E. Powers ◽  
Joshua Kay ◽  
Pushparajah Thavarajah ◽  
...  

A primary criticism of organic agriculture is its lower yield and nutritional quality compared to conventional systems. Nutritionally, dry pea (Pisum sativum L.) is a rich source of low digestible carbohydrates, protein, and micronutrients. This study aimed to evaluate dry pea cultivars and advanced breeding lines using on-farm field selections to inform the development of biofortified organic cultivars with increased yield and nutritional quality. A total of 44 dry pea entries were grown in two USDA-certified organic on-farm locations in South Carolina (SC), United States of America (USA) for two years. Seed yield and protein for dry pea ranged from 61 to 3833 kg ha-1 and 12.6 to 34.2 g/100 g, respectively, with low heritability estimates. Total prebiotic carbohydrate concentration ranged from 14.7 to 26.6 g/100 g. A 100-g serving of organic dry pea provides 73.5 to 133% of the recommended daily allowance (%RDA) of prebiotic carbohydrates. Heritability estimates for individual prebiotic carbohydrates ranged from 0.27 to 0.82. Organic dry peas are rich in minerals [iron (Fe): 1.9–26.2 mg/100 g; zinc (Zn): 1.1–7.5 mg/100 g] and have low to moderate concentrations of phytic acid (PA:18.8–516 mg/100 g). The significant cultivar, location, and year effects were evident for grain yield, thousand seed weight (1000-seed weight), and protein, but results for other nutritional traits varied with genotype, environment, and interactions. “AAC Carver,” “Jetset,” and “Mystique” were the best-adapted cultivars with high yield, and “CDC Striker,” “Fiddle,” and “Hampton” had the highest protein concentration. These cultivars are the best performing cultivars that should be incorporated into organic dry pea breeding programs to develop cultivars suitable for organic production. In conclusion, organic dry pea has potential as a winter cash crop in southern climates. Still, it will require selecting diverse genetic material and location sourcing to develop improved cultivars with a higher yield, disease resistance, and nutritional quality.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 206
Author(s):  
Suprio Ghosh ◽  
Shengrui Zhang ◽  
Muhammad Azam ◽  
Berhane S. Gebregziabher ◽  
Ahmed M. Abdelghany ◽  
...  

Tocopherols are natural antioxidants that increase the stability of fat-containing foods and are well known for their health benefits. To investigate the variation in seed tocopherol composition of soybeans from different origins, 493 soybean accessions from different countries (China, USA, Japan, and Russia) belonging to 7 maturity groups (MG 0–VI) were grown in 2 locations (Beijing and Hainan Provinces of China) for 2 years (2017 and 2018). The results showed that significant differences (p < 0.001) were observed among the accessions and origins for individual and total tocopherol contents. The total tocopherol content ranged from 118.92 μg g−1 to 344.02 μg g−1. Accessions from the USA had the highest average concentration of γ- and total tocopherols (152.92 and 238.21 μg g−1, respectively), whereas a higher level of α-tocopherol (12.82 μg g−1) was observed in the Russian accessions. The maturity group of the accession significantly (p < 0.001) influenced all tocopherol components, and higher levels of α-, γ-, and total tocopherols were observed in early maturing accessions, while late-maturing accessions exhibited higher levels of δ-tocopherol. The inclination of tocopherol concentrations with various MGs provided further evidence of the significance of MG in soybean breeding for seed tocopherol components. Furthermore, the correlation between the seed tocopherol components and geographical factors revealed that α-, γ-, and total tocopherols had significant positive correlations with latitude, while δ-tocopherol showed an opposite trend. The elite accessions with high and stable tocopherol concentrations determined could be used to develop functional foods, industrial materials, and breeding lines to improve tocopherol composition in soybean seeds.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 171
Author(s):  
Jinpeng Zhang ◽  
Qifu Yao ◽  
Ruixin Li ◽  
Yuqing Lu ◽  
Shenghui Zhou ◽  
...  

The grain number per spike (GNPS) is an important yield component, and much attention is given to the increase in GNPS for current yield improvement of common wheat. Here, a panel of 259 pre-breeding lines and elite commercial varieties were collected for the investigation of 12 agronomic traits, especially for spike-related traits, with 2-year replicates. The high correlation between GNPS and kernel number per spikelet (KNS) suggested that the high GNPS trait in our pre-breeding lines was mainly controlled by grain set number per spikelet. Genome-wide association studies (GWAS) using the 660K SNP genotyping assay suggested that a major locus on chromosomes 4BS contributed to the high GNPS trait, which contributed to 33% and 48% of the variation in KNS and GNPS, respectively. A good diagnostic KASP marker AX-109286577 flanking the 4BS locus was developed for easy selection of the large spike trait. Taken together, the results suggested that untapped rare allele variation in our pre-breeding lines can be used for improvement of the yield component of set grain number per spike.


2022 ◽  
Vol 23 (2) ◽  
pp. 713
Author(s):  
Delphine Vincent ◽  
AnhDuyen Bui ◽  
Doris Ram ◽  
Vilnis Ezernieks ◽  
Frank Bedon ◽  
...  

Bread wheat is the most widely cultivated crop worldwide, used in the production of food products and a feed source for animals. Selection tools that can be applied early in the breeding cycle are needed to accelerate genetic gain for increased wheat production while maintaining or improving grain quality if demand from human population growth is to be fulfilled. Proteomics screening assays of wheat flour can assist breeders to select the best performing breeding lines and discard the worst lines. In this study, we optimised a robust LC–MS shotgun quantitative proteomics method to screen thousands of wheat genotypes. Using 6 cultivars and 4 replicates, we tested 3 resuspension ratios (50, 25, and 17 µL/mg), 2 extraction buffers (with urea or guanidine-hydrochloride), 3 sets of proteases (chymotrypsin, Glu-C, and trypsin/Lys-C), and multiple LC settings. Protein identifications by LC–MS/MS were used to select the best parameters. A total 8738 wheat proteins were identified. The best method was validated on an independent set of 96 cultivars and peptides quantities were normalised using sample weights, an internal standard, and quality controls. Data mining tools found particularly useful to explore the flour proteome are presented (UniProt Retrieve/ID mapping tool, KEGG, AgriGO, REVIGO, and Pathway Tools).


2022 ◽  
Vol 12 ◽  
Author(s):  
Yusuke Tokumitsu ◽  
Takuto Kozu ◽  
Hiroshi Yamatani ◽  
Takeshi Ito ◽  
Haruna Nakano ◽  
...  

The degradation of chlorophyll in mature soybean seeds is closely related to the development of their yellow color. In this study, we examined G, its homologue G-like (GL), and their mutant alleles and investigated the relationship between these genes and chlorophyll accumulation in the seed coats of mature seeds. Transient expression of G and GL proteins fused with green fluorescent protein revealed that both were localized in plastids. Overexpression of G resulted in the accumulation of chlorophyll in the seed coats and cotyledons of mature seeds, indicating that high expression levels of G result in chlorophyll accumulation that exceeds its metabolism in the seeds of yellow soybean. Analysis of near isogenic lines at the G locus demonstrated a significant difference in the chlorophyll content of the seed coats and cotyledons of mature seeds when G and mutant g alleles were expressed in the d1d2 stay-green genetic background, indicating that the G protein might repress the SGR-independent degradation of chlorophyll. We examined the distribution of mutant alleles at the G and GL loci among cultivated and wild soybean germplasm. The g allele was widely distributed in cultivated soybean germplasm, except for green seed coat soybean lines, all of which contained the G allele. The gl alleles were much fewer in number than the g alleles and were mainly distributed in the genetic resources of cultivated soybean from Japan. None of the landraces and breeding lines investigated in this study were observed to contain both the g and gl alleles. Therefore, in conclusion, the mutation of the G locus alone is essential for establishing yellow soybeans, which are major current soybean breeding lines.


2022 ◽  
Vol 12 ◽  
Author(s):  
William Z. Payne ◽  
Tianyi Dou ◽  
John M. Cason ◽  
Charles E. Simpson ◽  
Bill McCutchen ◽  
...  

Identification of peanut cultivars for distinct phenotypic or genotypic traits whether using visual characterization or laboratory analysis requires substantial expertise, time, and resources. A less subjective and more precise method is needed for identification of peanut germplasm throughout the value chain. In this proof-of-principle study, the accuracy of Raman spectroscopy (RS), a non-invasive, non-destructive technique, in peanut phenotyping and identification is explored. We show that RS can be used for highly accurate peanut phenotyping via surface scans of peanut leaves and the resulting chemometric analysis: On average 94% accuracy in identification of peanut cultivars and breeding lines was achieved. Our results also suggest that RS can be used for highly accurate determination of nematode resistance and susceptibility of those breeding lines and cultivars. Specifically, nematode-resistant peanut cultivars can be identified with 92% accuracy, whereas susceptible breeding lines were identified with 81% accuracy. Finally, RS revealed substantial differences in biochemical composition between resistant and susceptible peanut cultivars. We found that resistant cultivars exhibit substantially higher carotenoid content compared to the susceptible breeding lines. The results of this study show that RS can be used for quick, accurate, and non-invasive identification of genotype, nematode resistance, and nutrient content. Armed with this knowledge, the peanut industry can utilize Raman spectroscopy for expedited breeding to increase yields, nutrition, and maintaining purity levels of cultivars following release.


2022 ◽  
Author(s):  
Nakeeb un Nisa Yetoo ◽  
Aafreen Sakina ◽  
Najeebul Rehman* Sofi ◽  
Asif B. Shikari ◽  
Reyaz R. Mir ◽  
...  

Abstract Background: Characterization and evaluation of plant genetic resources play an important role for their utilization in the crop improvement programmes. Methods and results: This study entails the agro-morphological, cooking quality and molecular characterization of 51 genotypes / advance breeding lines of rice from Kashmir Himalayas. Significant variability was observed for all agro-morphological and cooking quality traits among all the studied genotypes. Cluster analysis using UPGMA method divided the genotypes into two major clusters having 15 and 36 genotypes. Thirty eight genotypes screened using 24 SSR markers detected 48 alleles with 2.0 alleles per locus and an average polymorphism information content (PIC) of 0.37. High polymorphism information content (PIC) values was observed for the primers RM263 (0.67), RM159 (0.59) and RM333 (0.50). Furthermore, out of 38 SSR markers screened on 192 temperate rice germpalsm lines, R4M17 accurately differentiated indica and temperate japonica genotypes amplifying 220 bp and 169bp, respectively. Accordingly, 15 genotypes were reported as indica and 28 temperate japonica in addition to 149 genotypes as intermediate types. Conclusion: The information on marker-based diversity and performance based on cooking quality and agronomic traits helped to select the most divergent lines for crossing and also the analysis was useful to generate information on indica - japonica classification of our germplasm.


2022 ◽  
Vol 7 (1) ◽  
pp. 1-21
Author(s):  
Ahmad Rifqi Fauzi ◽  
◽  
Ahmad Junaedi ◽  
Iskandar Lubis ◽  
Munif Ghulamahdi ◽  
...  

<abstract> <p>Direct seeding of rice (DSR) may give benefit in using water and labor more efficient and reduce production costs. This study purposes to investigate the character of the seeds, their early vigor traits, the growth and development of rice plants for developing DSR cultivar. The research was conducted in four stages: the measurement of the size of the seed, endosperm, and embryo; the germination test in the laboratory; seedling test using experimental pots; and testing the agronomic performance on transplanting and direct seeding methods in a plastic house. Seed material used eight breeding lines of IPB University and two released varieties. The results of study showed that each genotype had different characteristics of seed, endosperm, and embryo in both weight and area. Seed weight becomes the most dominant in the emergence of superior EV traits, whereas the more seed weight indicates faster radicle emergence and more weight of seedling. DSR method compared to transplanting showed performance such as taller plant, higher leaf area and photosynthesis rate at early growth stage, earlier heading time, and higher plant dry weight since early growth until 65 days old. The seed characters have positively correlation to dry weight of seedlings, number of leaves, leaf area, and canopy dry weight. We also found that higher area of endosperm and embryo significantly correlated to have faster plumule emergence, higher leaf area and plant height. Candidate genotypes for DSR would be further investigated in the field trial agronomically.</p> </abstract>


2021 ◽  
Author(s):  
Seongmin Hong ◽  
Su Ryun Choi ◽  
Jihyeong Kim ◽  
Young-Min Jeong ◽  
Suk-Yoon Kwon ◽  
...  

Abstract Background Most crop seeds are F1 hybrids. Seed providers and plant breeders must be confident that the seed supplied to growers is of known, and uniform, genetic makeup. This requires maintenance of pure genotypes of the parental lines and testing to ensure the genetic purity of the F1 seed. Traditionally, seed testing for purity was done with a grow-out test (GOT) in the field, but these tests are time consuming and costly. Seed testing with molecular markers was introduced as a replacement for GOT early in the last decade. Recently, Kompetitive allele specific PCR (KASP) markers are promising tools for genetic testing of seeds. However, the markers available at that time could be inaccurate and could be used with only a small number of accessions or varieties due to the limited genetic information and reference genomes available. Results Here, we identified 4,925,742 SNPs in 50 accessions of the Brasscia rapa core collection. Furthermore, the total 2,925 SNPs were selected as accession-specific SNPs, considering properties of flanking region harboring accession-specific SNPs and genic region conservation among accessions by NGS analysis. In total, 100 accession-specific markers were developed as accession-specific KASP markers. Based on the results of our validation experiments, the accession-specific markers successfully distinguish individuals from the mixed population including 50 target accessions from B. rapa core collection and outgroup. Conclusions This study provides efficient methods for developing KASP markers to distinguish individuals from the mixture comprised of breeding lines and germplasms from the resequencing data of Chinese cabbage (Brassica rapa spp. pekinensis).


Author(s):  
Ali Khezrian ◽  
Masoumeh Bagheri ◽  
Reza Sourati Zanjani ◽  
Yousef Kheirkhah Rahimabad ◽  
Shahla Nematolahian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document