Polymer-Mineral Composite Solid Electrolytes

MRS Advances ◽  
2019 ◽  
Vol 4 (49) ◽  
pp. 2659-2664
Author(s):  
Bo Wang

ABSTRACTPolymer-mineral composite solid electrolytes have been prepared by hot pressing using lithium ion-exchanged bentonite (LIEB) and mineral derived LATSP (Li1.2Al0.1Ti1.9Si0.1P2.9O12) NASICON materials as solid electrolyte fillers in the polyethylene oxide (PEO) polymer containing LiTFSI salt. The mineral based solid electrolyte fillers not only increase ionic conductivity but also improve thermal stability. The highest ionic conductivities in the PEO-LIEB and PEO-LATSP composites were found to be 9.4×10-5 and 3.1×10-4 S·cm-1 at 40°C, respectively. The flexible, thermal stable and mechanical sturdy polymer-mineral composite solid electrolyte films can be used in the all-solid-state batteries.

Author(s):  
Yanke Lin ◽  
Ke Liu ◽  
Cheng Xiong ◽  
Maochun Wu ◽  
T. S. Zhao

Composite solid electrolytes (CSEs) that inherit desirable features from both ceramic and polymer electrolytes are promising to realize all-solid-state Li metal batteries with enhanced energy density and safety. However, conventional...


2021 ◽  
Vol 9 ◽  
Author(s):  
Danyang Zhang ◽  
Lina Li ◽  
Xiaochao Wu ◽  
Jun Wang ◽  
Qingkui Li ◽  
...  

As a high-efficiency energy storage and conversion device, lithium-ion batteries have high energy density, and have received widespread attention due to their good cycle performance and high reliability. However, currently commercial lithium batteries usually use organic solutions containing various lithium salts as liquid electrolytes. In practical applications, liquid electrolytes have many shortcomings and shortcomings, such as poor chemical stability, flammability, and explosion. Therefore, the liquid electrolyte has a great safety hazard. The use of solid electrolyte ensures the safety of lithium-ion batteries, and has the advantages of high energy density, good cycle performance, long life, and wide electrochemical window, making the battery safer and more durable, with higher energy density and simple battery Structural design. Solid electrolytes mainly include inorganic solid electrolytes and organic polymer solid electrolytes. Although both inorganic solid electrolytes and polymer solid electrolytes have their own advantages, as far as the existing research work is concerned, whether it is an inorganic system or a polymer system, a single-system solid electrolyte can never achieve the full performance of an ideal solid electrolyte. The composite solid electrolyte composed of active or passive inorganic filler and polymer matrix is considered as a promising candidate electrolyte for all-solid-state lithium batteries. Among many polymer systems, PEO-based is considered to be the most ideal polymer substrate. In this review article, we first introduced the structure, properties, and preparation methods of PEO-based polymer electrolytes. Furthermore, the researches related to the modification of PEO-based polymer solid electrolytes in recent years are summarized. The contribution of polymer structural modification and the introduction of additives to the ionic conductivity, electrochemical stability and mechanical properties of PEO-based solid electrolytes is described. Examples of different composite solid electrolyte design concepts were extensively discussed, such as inorganic inert nanoparticles/PEO, oxide/PEO, and sulfide/PEO. Finally, the future development direction of composite solid electrolytes was prospected.


2017 ◽  
Vol 5 (10) ◽  
pp. 4940-4948 ◽  
Author(s):  
Jianjun Zhang ◽  
Xiao Zang ◽  
Huijie Wen ◽  
Tiantian Dong ◽  
Jingchao Chai ◽  
...  

PPC/LLZTO composite solid electrolyte was developed for a flexible solid lithium battery.


2019 ◽  
Vol 329 ◽  
pp. 40-45 ◽  
Author(s):  
Fan Bai ◽  
Xuefu Shang ◽  
Hiroyoshi Nemori ◽  
Masaya Nomura ◽  
Daisuke Mori ◽  
...  

Small ◽  
2021 ◽  
pp. 2006578
Author(s):  
Chenglong Deng ◽  
Nan Chen ◽  
Chuanyu Hou ◽  
Hanxiao Liu ◽  
Zhiming Zhou ◽  
...  

2020 ◽  
Author(s):  
Sean Culver ◽  
Alex Squires ◽  
Nicolo Minafra ◽  
Callum Armstrong ◽  
Thorben Krauskopf ◽  
...  

<p>Identifying and optimizing highly-conducting lithium-ion solid electrolytes is a critical step towards the realization of commercial all–solid-state lithium-ion batteries. Strategies to enhance ionic conductivities in solid electrolytes typically focus on the effects of modifying their crystal structures or of tuning mobile-ion stoichiometries. A less-explored approach is to modulate the chemical-bonding interactions within a material to promote fast lithium-ion diffusion. Recently, the idea of a solid-electrolyte inductive effect was proposed, whereby changes in bonding within the solid-electrolyte host-framework modify the potential-energy landscape for the mobile ions, resulting in an enhanced ionic conductivity. This concept has since been invoked to explain anomalous conductivity trends in a number of solid electrolytes. Direct evidence for a solid-electrolyte inductive effect, however, is lacking—in part because of the challenge of quantifying changes in local bonding interactions within a solid-electrolyte host-framework. <a></a><a>Here, we consider the evidence for a solid-electrolyte inductive effect in the archetypal superionic lithium-ion conductor Li<sub>10</sub>Ge<sub>1−<i>x</i></sub>Sn<i><sub>x</sub></i>P<sub>2</sub>S<sub>12</sub>, using Rietveld refinements against high-resolution temperature-dependent neutron-diffraction data, Raman spectroscopy, and density functional theory calculations.</a> Substituting Ge for Sn weakens the {Ge,Sn}–S bonding interactions and increases the charge-density associated with the S<sup>2-</sup> ions. This charge redistribution modifies the Li<sup>+</sup> substructure causing Li<sup>+</sup> ions to bind more strongly to the host-framework S anions; which in turn modulates the Li-ion potential-energy surface, increasing local barriers for Li-ion diffusion. Each of these effects is consistent with the predictions of the solid-electrolyte inductive effect model. Density functional theory calculations further predict that this inductive effect occurs even in the absence of changes to the host-framework geometry due to Ge → Sn substitution. These results provide direct evidence in support of a measurable solid-electrolyte inductive effect and demonstrate its application as a practical strategy for tuning ionic conductivities in superionic lithium-ion conductors.</p>


Sign in / Sign up

Export Citation Format

Share Document