scholarly journals ELECTROCHEMICAL ACTIVITY OF PtM (M=Co, Cu, Ni) CATALYSTS SUPPORTED ON CARBON VULCAN FOR OXYGEN REDUCTION REACTION (ORR) IN FUEL CELLS

2018 ◽  
Vol 56 (2A) ◽  
pp. 81-88 ◽  
Author(s):  
Vu Thi Hong Phuong

PEMFC - proton exchange membrane fuel cell is electrochemical devices producing electricity and heat from reaction between a fuel (often hydrogen) and oxygen. Therefore, energy production is generally clean and effective without burning the fuel like the tradition way in combustion engines. The obstacles encountered fuel cell commercialization are mainly due to expensive catalyst materials (Platinum) and long-term instability performance. For this reason, numerous investigations have been undertaken with the goal of developing low-cost, efficient electrocatalysts that can be used as alternatives to Pt. In this paper, a two-step procedure at room temperature was applied to prepare a bimetallic Pt-M(M = metal) supported carbon Vulcan. First, the chemical reduction of M metal ions by sodium borohydride in the presence of carbon powder is performed. Second, the partial galvanic replacement of M particle layers by Pt is achieved upon immersion in a chloroplatinate solution. The major size of synthesized metallic particles was around 2-3 nm. From the slope of Koutecky-Levich plot for ORR using PtM/C materials as catalysts it was found that the overall electron transfer number ranged from 3 to 4, leading to the suggestion of H2O2 formation as an intermediate of the ORR.

2012 ◽  
Vol 15 (3) ◽  
pp. 145-149 ◽  
Author(s):  
D.C. Martínez-Casillas ◽  
O.A. Gil-Esquivel ◽  
O. Solorza-Feria

The research is aimed to study the thermal treatment effects in the electrochemical activity of Pd5Cu4Pt electrocatalyst for the oxygen reduction reaction (ORR) in acid medium as well as on its performance as cathode electrode in a single Proton Exchange Membrane Fuel Cell (PEMFC). The electrocatalyst is synthesized by chemical reduction of PdCl2, CuCl2 and H2PtCl6 with NaBH4 in THF, and is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Cyclic voltammetry (CV) and rotating disc electrode (RDE) are performed for electrochemical characterization in a 0.5 M H2SO4 at 25 ºC. Results of thermal treatment at 200 and 300 ºC in H2 atmosphere show a growth of nanocrystallyte particles and an enhancement of the crystallinity of the electrocatalyst. Shifts towards positive 2 θ XRD values are associated to the incorporation of elements inside the crystalline structure of the sample. Electrochemical results show a decrease in the electrocatalytic activity as the temperature of the thermal treatment increases. The maximum power density, Wmax of 350 mW cm-2 is achieved using Pd5Cu4Pt without thermal treatment with 0.8 mg cm-2 cathode electrocatalyst loading of the PEMFC. This result is attributed to the formation of new inactive-ORR phases on the electrocatalyst with the thermal treatment.


2018 ◽  
Vol 778 ◽  
pp. 275-282
Author(s):  
Noaman Khan ◽  
Saim Saher ◽  
Xuan Shi ◽  
Muhammad Noman ◽  
Mujahid Wasim Durani ◽  
...  

Highly porous ZIF-67 (Zeolitic imidazole framework) has a conductive crystalline metal organic framework (MOF) structure which was served as a precursor and template for the preparation of nitrogen-doped carbon nanotubes (NCNTs) electrocatalysts. As a first step, the chloroplatinic acid, a platinum (Pt) precursor was infiltrated in ZIF-67 with a precise amount to obtain 0.12 mg.cm-2 Pt loading. Later, the infiltrated structure was calcined at 700°C in Ar:H2 (90:10 vol%) gas mixture. Multi-walled nitrogen-doped carbon nanotubes were grown on the surface of ZIF-67 crystals following thermal activation at 700°C. The resulting PtCo-NCNTs electrocatalysts were deposited on Nafion-212 solid electrolyte membrane by spray technique to study the oxygen reduction reaction (ORR) in the presence of H2/O2 gases in a temperature range of 50-70°C. The present study elucidates the performance of nitrogen-doped carbon nanotubes ORR electrocatalysts derived from ZIF-67 and the effects of membrane electrode assembly (MEA) steaming on the performance of proton exchange membrane fuel cell (PEMFC) employing PtCo-NCNTs as ORR electrocatalysts. We observed that the peak power density at 70°C was 450 mW/cm2 for steamed membrane electrode assembly (MEA) compared to 392 mW/cm2 for an identical MEA without steaming.


2021 ◽  
Vol 65 (1) ◽  
Author(s):  
D. M. López-Rosas ◽  
R.M. Félix-Navarro ◽  
J. R. Flores-Hernández ◽  
C. Silva-Carrillo ◽  
I. L. Albarrán-Sánchez ◽  
...  

Abstract. This work reports the synthesis, characterization, and catalytic activity of Pt-Ni/CNT with a low platinum load to use as cathode electrocatalyst in PEMFC (proton-exchange membrane fuel cells). The synthesis of nickel particles on the carbon nanotubes surface was carried out by chemical reduction of a Ni(ethylenediamine) complex; after that, the galvanic displacement reaction was performed to platinum deposition onto Ni/CNT. The Pt-Ni/CNT was deposited by spray technique on a gas diffuser layer (GDL) and subsequently subjected to several potential cycles to promote Ni atoms migration. Finally, its catalytic activity was evaluated in a fuel cell.   Resumen. En este trabajo, se reporta la síntesis, caracterización y evaluación catalítica del electrocatalizador Pt-Ni/CNT con bajo contenido de platino, empleado como electrocatalizador catódico en una celda de combustible tipo PEMFC (Celda de combustible de membrana de intercambio protónico). La síntesis de las partículas de níquel sobre la superficie de los nanotubos de carbono se llevó a cabo mediante la reducción química del complejo de Ni(etilendiamina) y posteriormente, se depositó platino sobre el material Ni/CNT mediante la reacción de desplazamiento galvánico. Se depositó una película de Pt-Ni/CNT sobre un difusor de gas mediante la técnica de esprayado y posteriormente fue sometido a diversos ciclos de potencial para promover la migración de los átomos de níquel y evaluar su actividad catalítica en una celda de combustible.


2021 ◽  
Author(s):  
Minhua Shao ◽  
Fei Xiao ◽  
Qi Wang ◽  
Gui-Liang Xu ◽  
Xueping Qin ◽  
...  

Abstract Proton exchange membrane fuel cell converts hydrogen and oxygen into electricity with zero emission1. The high cost and low durability of Pt-based electrocatalysts for oxygen reduction reaction hinder its wide applications2,3. The development of non-precious metal electrocatalysts also reaches the bottleneck because of the low activity and durability4,5. Here we rationally design a hybrid electrocatalyst consisting of atomically dispersed Pt and Fe single atoms and intermetallic PtFe alloy nanoparticles. The Pt mass activity of the hybrid catalyst is 3.5 times higher than that of commercial Pt/C in a fuel cell. More importantly, the fuel cell with an ultra-low Pt loading in the cathode (0.015 mgPt cm-2) shows unprecedented durability, with 93.6% activity retention after 100,000 cycles and no noticeable current drop at 0.6 V for at least 206 h. These results highlight the importance of the synergistic effects among active sites in hybrid electrocatalysts and provide an alternative way to design more active and durable low-Pt electrocatalysts for electrochemical devices.


2021 ◽  
Vol 875 ◽  
pp. 193-199
Author(s):  
Ahmad Shahbaz ◽  
Ali Afaf ◽  
Nawaz Tahir ◽  
Ullah Abid ◽  
Saher Saim

A highly active Platinum Group Metal (PGM) and non-PGM electrocatalysts with thermally extruded nanotubes have been prepared for Proton Exchange Membrane (PEM) fuel cell by sintering Nickel zeolitic imidazole framework (Ni-ZIF). Preeminent electro-catalytic activities have been observed through single fuel cell tests and rotating disk electrode (RDE). This study involves the comparison of Oxygen Reduction Reaction (ORR) activities and fuel cell (FC) test station performance of two catalyst Nickel and Platinum mixed Nickel nanotubes (Ni NT, Ni/Pt NT) respectively. The acidic cells with corresponding Ni and Ni/Pt catalysts delivers peak power densities of 325 mWcm-2 and 455 mWcm-2 at 75 °C inside fuel cell. Our results indicate that, the synthesized Nickel nanotubes has profound effect on catalytic performance of both PGM and non-PGM electro catalysts.


1999 ◽  
Vol 575 ◽  
Author(s):  
T. Jan Hwang ◽  
Hong Shao ◽  
Neville Richards ◽  
Jerome Schmitt ◽  
Andrew Hunt ◽  
...  

ABSTRACTThe objective of this research is to develop the combustion chemical vapor deposition (CCVD) process for low-cost manufacture of catalytic coatings for proton exchange membrane fuel cell (PEMFC) applications. The platinum coatings as well as the fabrication process for membrane-electrode-assemblies (MEAs) were evaluated in a single testing fuel cell using hydrogen/oxygen. It was found that increasing the platinum loading from 0.05 to 0.1 mg/cm2 did not increase the fuel cell performance. The in-house MEA fabrication process needs to be improved to reduce the cell resistance. Significantly higher performance of Pt coating by the CCVD process has been obtained by MCT's fuelcell industry collaborators who are more experienced with MEA fabrication. The results can not be revealed due to confidentiality agreements.


Sign in / Sign up

Export Citation Format

Share Document