Journal of New Materials for Electrochemical Systems
Latest Publications


TOTAL DOCUMENTS

382
(FIVE YEARS 82)

H-INDEX

9
(FIVE YEARS 2)

Published By Journal Of New Materials For Electrochemical Systems

2292-1168, 1480-2422

2021 ◽  
Vol 24 (2) ◽  
pp. 120-128
Author(s):  
M Vijayakumar ◽  
K Kumaresan ◽  
R Gopal ◽  
S D Vetrivel ◽  
V Vijayan

In this study, an attempt was made to develop and characterize Snake Grass Fiber (SGF)/Silicon Carbide (SiC)/epoxy and Snake Grass Fiber/Sisal Fiber (SF)/Silicon Carbide/epoxy hybrid composites using a compression moulding technique. Mechanical characteristics of the produced hybrid composites such as tensile, flexural, and hardness tests were analyzed. Also experiments have been carried out to predict the thermal stability of the fabricated composite samples. The interface between fiber and matrix was examined by using Scanning Electron Microscopy (SEM). Among SGF/SiC/epoxy and SGF/SF/SiC/epoxy composites, it has been observed that hybrid composite SGF/SF/SiC/epoxy exhibits the higher hardness of 82 Shore-D, tensile strength of 51 MPa and flexural strength of 73 MPa. In contrast to the mechanical properties, the percentage of water absorption was lower in the SGF/SiC/epoxy hybrid composite. It is proven from the results that the SGF/SF/SiC/epoxy hybrid composites will enhance the strength of the composites. This composite material is also a potential candidate for the hardware of energy devices including electrochemical energy along with Fuel Cell systems.


2021 ◽  
Vol 24 (2) ◽  
pp. 103-110
Author(s):  
Umair Yaqub Qazi

The effect of different additives on the AgNPs formation process was explored in this study. AgNPs were synthesized in an aqueous solution of silver nitrate-containing surfactants by photoreduction of silver ions. The concentration dependency of AgNPs formation suggested that stability was induced by the equilibrium of AgNPs adsorbed by surfactants with higher carbon chain molecules such as SDS and AOT. These results open up a new window both for structural control and the development process. It also indicated that different additives had an impact on the morphology of NPs. The hydrocarbon chain influenced the growth process and demonstrated that <10 carbon chain surfactants such as SMS, SOS, did not constitute the CGC and had a minor effect on the mechanism of growth. However, the NPs formation begun at a lower limit indicated as CGC. It was observed only with hydrocarbon chains of > 10 carbon atoms such as AOT, SDS. Fluorescence results confirmed that after laser irradiation, hemi-micelle formation after the development of AgNPs.


2021 ◽  
Vol 24 (2) ◽  
pp. 66-72
Author(s):  
S.Z.J Zaidi ◽  
S. Hassan ◽  
M. Raza ◽  
C. Harito ◽  
B. Yuliarto ◽  
...  

CNT (10, 0) is carbon nanotube; Graphene is a 2-dimensional carbon allotrope being light weight and Chitosan is a linear polysaccharide. In this work, detailed analysis of the above three stated compounds as anode for lithium-ion batteries is stated. The density function theory (DFT) computations were used to carry out the investigation of the above stated compound as anode materials for the lithium-ion batteries. The analysis shows that Graphene and Chitosan are highly favorable to be used as anodes materials for the lithium-ion batteries. The results show that the Vcell of Graphene and Chitosan when they are used as an anode for lithium-ion batteries are extremely higher as compared to CNT (10, 0) at 5.632 Volts, 4.719 Volts and 1.22 Volts, respectively.


2021 ◽  
Vol 24 (2) ◽  
pp. 129-141
Author(s):  
Pallavi Chaudhury ◽  
Sikata Samantaray

In this research work the thermal modeling of a nonconductive Silicon carbide Ceramic matrix composite (CMC) machined by Die Sinking Electric Discharge Machining (EDM) has been done. Though SiC is a non-conductive material but the presence of CNT makes it a conductive material which can be machined with EDM. The modeling procedure carried out by considering some realistic approach like Gaussian heat Flux, Specific Discharge Energy, Variable Latent heat etc. For this analysis a 2D continuum has been designed as work domain. By simulating the work domain model by a Finite Element Analysis (FEA) Software (COMSOL), material removal rate (MRR) has been estimated with variable thermal properties. Parametric analysis of effect of Variable Specific heat on MRR by considering different current, Voltage and Pulse-On time has been performed. The effect of different input parameters (peak current and Pulse-on time) on Crater geometry has been done. A new concept of Specific discharge energy has been introduced during modelling to make it a more realistic model which can also be used as electrode support for electrochemical energy devices as Polymer Electrolyte Membrane Fuel Cells on Li-ion battery. Desirability analysis has been done to get an optimize set of input parameters for I= 3A, V=30V, Ton= 75 µs for machining ceramic matrix composite by EDM. The optimized MRR at this setting is 7.25 mm3/min whereas PFE is 87%. The experimental analysis has been also performed to strengthen the thermal and mathematical modelling.


2021 ◽  
Vol 24 (2) ◽  
pp. 73-77
Author(s):  
Jianzhi Sun ◽  
Yan Dong ◽  
Xinfang Wang ◽  
Chunyan Kong ◽  
Jinming Hong ◽  
...  

In this paper, MoO3 microrods was prepared using corn straw as biological template via roasting process.The components and crystal characterization of the material were investigated via X-ray diffraction(XRD),scanning electron microscopy( SEM), and the electrochemistry property and mechanism was studied.The results show that the MoO3 material synthesized by template method is Orthorhombic structures.And the MoO3 particles were submicron and micron rods with uniform distribution and a smooth surface. MoO3 microrods had an average diameter that ranged from 1 to 2 μm. The result indicated that the MoO3 as the new negative of aluminum battery delivers a higher discharge capacity of 190 mAh/g at a scanning rate of 1mv/s, which showing good capacity and cycling performance.


2021 ◽  
Vol 24 (2) ◽  
pp. 84-94
Author(s):  
G. Ganesan Subramanian ◽  
T. Suresh Padmanabhan ◽  
I.A. Chidambaram ◽  
B. Paramasivam

This paper is focused on design and application of Pseudo-Derivative Feedback (PDF) controller for Automatic Generation Control (AGC) of a two-area thermal reheat interconnected power system treated in deregulated condition. The proposed controller gains are tuned simultaneously using Flower Pollination Algorithm (FPA) in order to achieve the optimal transient response of the test system. The control performance of the PDF controller is compared with Proportional Integral (PI) and Proportional Integral Derivative (PID) controllers. Further to improve the AGC performance, Hydrogen Energy Storage (HES) are included in its control area. The execution of HES unit captures the underlying fall in frequency as well as the tie line control power deviations after a sudden load unsettling influence. The simulation results demonstrate that the proposed PDF controller enhance the dynamic response of the deregulated power system as compared with PI and PID contrtoller. The frequency oscillation and tie-line power deviations in the control zones are reduced and the settling time is additionally enhanced when HES unit takes an interest in the frequency regulation along with the traditional generators. Additionally, the Power System Restoration Indices (PSRI) is figured in view of system dynamic performances and the remedial measures to be taken can be decreed. These PSRI shows that the ancillary service requirement to enhances the effectiveness of physical task of the power system with the expanded transmission limit in the system. The presence of an Hydrogen Energy Storage (HES) water electrolyser coupled to a fuel cell improves significantly the control and operation of an energy system and provides good margin of stability of the grid system compared to that a system without HES unit.


2021 ◽  
Vol 24 (1) ◽  
pp. 14-20
Author(s):  
Xiuwei Fu ◽  
Li Fu ◽  
Hashem Imani Marrani

The microbial fuel cell is one of the most important tools in the supply of renewable energy and its controller plays an important role in improving the performance and stability of its output. Using the advantages of adaptive and sliding mode methods, this paper presents a combined technique to ensure the stability and output voltage stabilization of the fuel cell in the presence of parametric uncertainties and nonlinear terms. The proposed control method is compared with classical control approaches and the simulation results confirm its efficiency.


2021 ◽  
Vol 24 (1) ◽  
pp. 38-42
Author(s):  
Umair Yaqub Qazi

A photochemical reduction of a silver salt precursor using near-ultra-violet (UV) pulsed laser (355 nm) irradiation into aqueous surfactant sodium-bis (2–ethylhexyl) sulfosuccinate (AOT) solution has succeeded in synthesizing homogenous speculative silver nanoparticles (Ag NPs). Without using any additive, the irradiation from ns laser pulses to aqueous silver nitrate solution was observed to create nanocubes (NCs). The photoproduct was transformed into a nanosphere when irradiated with a particular AOT concentration. The photoproduct concentration of NCs to NSs was approximately ten times lower than the critical concentration of micellar (CMC) in AOT, which means that the growth of NSs was aided in a single layer of AOT adsorbed on silver surfaces. A UV / Visible Spectrophotometer and Transmission/Scanning electron microscopy (TEM/SEM) were used to characterize the photochemically synthesized sample thoroughly. The mean size of AgNSs, analyzed by TEM, was 8 nm. These parameters have shown the growth of AgNSs and discussed in the paper. These nanoparticles are potential candidates for catalyst, semiconductor, photovoltaic equipment, medical diagnostics applications than bulk materials.


2021 ◽  
Vol 24 (1) ◽  
pp. 43-48
Author(s):  
Abdelghani Harrag

This paper presents a new neural network single sensor maximum power point tracking algorithm controlling the DC-DC boost converter to guarantee the transfer of the proton exchange membrane fuel cell maximum generated power to the load. The implemented neural network single sensor controller has been developed and trained firstly in offline mode using single sensor maximum power point tracking data obtained previously; and secondly used in online mode to track the maximum output power of the fuel cell power system. Comparative simulation results prove the superiority of the proposed neural network single sensor maximum power point compared to the single sensor one especially in transit response reducing by the way the overshoot and the tracking time which leads to an overall energy losses reduction. In addition, the implemented neural network single sensor MPPT employs only one sensor which will reduce the complexity and the cost of PEM fuel cell power system. To our knowledge, this study is a pioneering work using a neural network single sensor controller as PEM fuel cell MPPT.


2021 ◽  
Vol 24 (1) ◽  
pp. 34-37
Author(s):  
T. Sathish ◽  
N. Sabarirajan

The airline sector mostly preferable material as aluminium and its alloy due to light weight and better resistance combatant for environmental factors. In this work mainly focusing to fabricate the aluminium matrix composites and reducing the surface roughness value of the specimen in the machining process. Initially the AA7175 with reinforcement of zirconium carbide (ZrC) particles are synthesized by the route of stir casting process, the stirring deed improve the material strength. The Design of experiments is involved to optimize the machining (CNC vertical milling) parameters such as Spindle rotational speed (2000 rpm, 2400 rpm and 2800 rpm), Machine feed rate (1000 mm/min, 1400 mm/min and 1800 mm/min) and depth of cut (0.3mm, 0.6 mm and 0.9 mm). The L 27 orthogonal array model is conducted to optimize the factors with the help of Minitab numerical analysis. This approach finds the optimal factors and reduces the surface roughness value, the microstructure examine is carried out and its image is translated to analyze the 3D profilometry technique.


Sign in / Sign up

Export Citation Format

Share Document