Dual-Band Decagonal Circular Patch Antenna with Complementary Split Ring Resonator on Ground Plane

Author(s):  
Palla Ravikumar ◽  
M. Nikitha ◽  
K. Kumar Naik
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Mehrab Ramzan ◽  
Kagan Topalli

This paper presents a design methodology for the implementation of a miniaturized square patch antenna and its circuit model for 5.15 GHz ISM band. The miniaturization is achieved by employing concentric complementary split ring resonator (CSRR) structures in between the patch and ground plane. The results are compared with the traditional square patch antenna in terms of area, bandwidth, and efficiency. The area is reduced with a ratio of 1/4 with respect to the traditional patch. The miniaturized square patch antenna has an efficiency, bandwidth, and reflection coefficient of 78%, 0.4%, and −16 dB, respectively. The measurement and circuit modeling results show a good agreement with the full-wave electromagnetic simulations.


2019 ◽  
Vol 33 (16) ◽  
pp. 2096-2111 ◽  
Author(s):  
Ghanshyam Singh ◽  
Binod Kumar Kanaujia ◽  
Vijay K. Pandey ◽  
Deepak Gangwar ◽  
Sachin Kumar

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Noelia Ortiz ◽  
Francisco Falcone ◽  
Mario Sorolla

A simple and successful dual band patch linear polarized rectangular antenna design is presented. The dual band antenna is designed etching a complementary rectangular split-ring resonator in the patch of a conventional rectangular patch antenna. Furthermore, a parametric study shows the influence of the location of the CSRR particle on the radiation characteristics of the dual band antenna. Going further, a miniaturization of the conventional rectangular patch antenna and an enhancement of the complementary split-ring resonator resonance gain versus the location of the CSRR on the patch are achieved. The dual band antenna design has been made feasible due to the quasistatic resonance property of the complementary split-ring resonators. The simulated results are compared with measured data and good agreement is reported.


Sign in / Sign up

Export Citation Format

Share Document