scholarly journals Green's function for the lossy wave equation

2008 ◽  
Vol 30 (1) ◽  
pp. 1302.1-1302.5 ◽  
Author(s):  
R. Aleixo ◽  
E. Capelas de Oliveira

Using an integral representation for the first kind Hankel (Hankel-Bessel Integral Representation) function we obtain the so-called Basset formula, an integral representation for the second kind modified Bessel function. Using the Sonine-Bessel integral representation we obtain the Fourier cosine integral transform of the zero order Bessel function. As an application we present the calculation of the Green's function associated with a second-order partial differential equation, particularly a wave equation for a lossy two-dimensional medium. This application is associated with the transient electromagnetic field radiated by a pulsed source in the presence of dispersive media, which is of great importance in the theory of geophysical prospecting, lightning studies and development of pulsed antenna systems.

1999 ◽  
Author(s):  
Paul E. Barbone

Abstract We derive a one-way wave equation representation of the “free space” Green’s function for an inhomogeneous medium. Our representation results from an asymptotic expansion in inverse powers of the wavenumber. Our representation takes account of losses due to scattering in all directions, even though only one-way operators are used.


Sign in / Sign up

Export Citation Format

Share Document