The Utility of Camptothecin as a Synergist of Bacillus thuringiensis var. kurstaki and Nucleopolyhedroviruses Against Trichoplusia ni and Spodoptera exigua

2012 ◽  
Vol 105 (4) ◽  
pp. 1164-1170 ◽  
Author(s):  
Shifeng Sun ◽  
Zhongshan Cheng ◽  
Jing Fan ◽  
Xinghu Cheng ◽  
Yi Pang
Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1233
Author(s):  
Adriana Ricarte-Bermejo ◽  
Oihane Simón ◽  
Ana Beatriz Fernández ◽  
Trevor Williams ◽  
Primitivo Caballero

Enhancins are metalloproteinases that facilitate baculovirus infection in the insect midgut. They are more prevalent in granuloviruses (GVs), constituting up to 5% of the proteins of viral occlusion bodies (OBs). In nucleopolyhedroviruses (NPVs), in contrast, they are present in the envelope of the occlusion-derived virions (ODV). In the present study, we constructed a recombinant Autographa californica NPV (AcMNPV) that expressed the Trichoplusia ni GV (TnGV) enhancin 3 (En3), with the aim of increasing the presence of enhancin in the OBs or ODVs. En3 was successfully produced but did not localize to the OBs or the ODVs and accumulated in the soluble fraction of infected cells. As a result, increased OB pathogenicity was observed when OBs were administered in mixtures with the soluble fraction of infected cells. The mixture of OBs and the soluble fraction of Sf9 cells infected with BacPhEn3 recombinant virus was ~3- and ~4.7-fold more pathogenic than BacPh control OBs in the second and fourth instars of Spodoptera exigua, respectively. In contrast, when purified, recombinant BacPhEn3 OBs were as pathogenic as control BacPh OBs. The expression of En3 in the soluble fraction of insect cells may find applications in the development of virus-based insecticides with increased efficacy.


2009 ◽  
Vol 75 (16) ◽  
pp. 5237-5243 ◽  
Author(s):  
Shangling Fang ◽  
Li Wang ◽  
Wei Guo ◽  
Xia Zhang ◽  
Donghai Peng ◽  
...  

ABSTRACT Bacillus thuringiensis has been used as a bioinsecticide to control agricultural insects. Bacillus cereus group genomes were found to have a Bacillus enhancin-like (bel) gene, encoding a peptide with 20 to 30% identity to viral enhancin protein, which can enhance viral infection by degradation of the peritrophic matrix (PM) of the insect midgut. In this study, the bel gene was found to have an activity similar to that of the viral enhancin gene. A bel knockout mutant was constructed by using a plasmid-free B. thuringiensis derivative, BMB171. The 50% lethal concentrations of this mutant plus the cry1Ac insecticidal protein gene were about 5.8-fold higher than those of the BMB171 strain. When purified Bel was mixed with the Cry1Ac protein and fed to Helicoverpa armigera larvae, 3 μg/ml Cry1Ac alone induced 34.2% mortality. Meanwhile, the mortality rate rose to 74.4% when the same amount of Cry1Ac was mixed with 0.8 μg/ml of Bel. Microscopic observation showed a significant disruption detected on the midgut PM of H. armigera larvae after they were fed Bel. In vitro degradation assays showed that Bel digested the intestinal mucin (IIM) of Trichoplusia ni and H. armigera larvae to various degrading products, similar to findings for viral enhancin. These results imply Bel toxicity enhancement depends on the destruction of midgut PM and IIM, similar to the case with viral enhancin. This discovery showed that Bel has the potential to enhance insecticidal activity of B. thuringiensis-based biopesticides and transgenic crops.


2004 ◽  
Vol 384 (3) ◽  
pp. 507-513 ◽  
Author(s):  
Salvador HERRERO ◽  
Joel GONZÁLEZ-CABRERA ◽  
Juan FERRÉ ◽  
Petra L. BAKKER ◽  
Ruud A. de MAAGD

Several mutants of the Bacillus thuringiensis Cry1Ca toxin affected with regard to specific activity towards Spodoptera exigua were studied. Alanine was used to replace single residues in loops 2 and 3 of domain II (mutant pPB19) and to replace residues 541–544 in domain III (mutant pPB20). Additionally, a Cry1Ca mutant combining all mutations was constructed (mutant pPB21). Toxicity assays showed a marked decrease in toxicity against S. exigua for all mutants, while they retained their activity against Manduca sexta, confirming the importance of these residues in determining insect specificity. Parameters for binding to the specific receptors in BBMV (brush border membrane vesicles) of S. exigua were determined for all toxins. Compared with Cry1Ca, the affinity of mutant pPB19 was slightly affected (2-fold lower), whereas the affinity of the mutants with an altered domain III (pPB20 and pPB21) was approx. 8-fold lower. Activation of Cry1Ca protoxin by incubation with S. exigua or M. sexta BBMV revealed the transient formation of an oligomeric form of Cry1Ca. The presence of this oligomeric form was tested in the activation of the different Cry1Ca mutants, and we found that those mutated in domain II (pPB19 and pPB21) could not generate the oligomeric form when activated by S. exigua BBMV. In contrast, when oligomerization was tested using BBMV prepared from M. sexta, all of the Cry1Ca mutants showed the formation of a similar oligomeric form as did the wild-type toxin. Our results show how modification of insect specificity can be achieved by manipulation of different parts of the toxin structure involved in different steps of the mode of action of B. thuringiensis toxins.


Sign in / Sign up

Export Citation Format

Share Document