scholarly journals Unsupervised Neural Machine Translation with SMT as Posterior Regularization

Author(s):  
Shuo Ren ◽  
Zhirui Zhang ◽  
Shujie Liu ◽  
Ming Zhou ◽  
Shuai Ma

Without real bilingual corpus available, unsupervised Neural Machine Translation (NMT) typically requires pseudo parallel data generated with the back-translation method for the model training. However, due to weak supervision, the pseudo data inevitably contain noises and errors that will be accumulated and reinforced in the subsequent training process, leading to bad translation performance. To address this issue, we introduce phrase based Statistic Machine Translation (SMT) models which are robust to noisy data, as posterior regularizations to guide the training of unsupervised NMT models in the iterative back-translation process. Our method starts from SMT models built with pre-trained language models and word-level translation tables inferred from cross-lingual embeddings. Then SMT and NMT models are optimized jointly and boost each other incrementally in a unified EM framework. In this way, (1) the negative effect caused by errors in the iterative back-translation process can be alleviated timely by SMT filtering noises from its phrase tables; meanwhile, (2) NMT can compensate for the deficiency of fluency inherent in SMT. Experiments conducted on en-fr and en-de translation tasks show that our method outperforms the strong baseline and achieves new state-of-the-art unsupervised machine translation performance.

Author(s):  
Raj Dabre ◽  
Atsushi Fujita

In encoder-decoder based sequence-to-sequence modeling, the most common practice is to stack a number of recurrent, convolutional, or feed-forward layers in the encoder and decoder. While the addition of each new layer improves the sequence generation quality, this also leads to a significant increase in the number of parameters. In this paper, we propose to share parameters across all layers thereby leading to a recurrently stacked sequence-to-sequence model. We report on an extensive case study on neural machine translation (NMT) using our proposed method, experimenting with a variety of datasets. We empirically show that the translation quality of a model that recurrently stacks a single-layer 6 times, despite its significantly fewer parameters, approaches that of a model that stacks 6 different layers. We also show how our method can benefit from a prevalent way for improving NMT, i.e., extending training data with pseudo-parallel corpora generated by back-translation. We then analyze the effects of recurrently stacked layers by visualizing the attentions of models that use recurrently stacked layers and models that do not. Finally, we explore the limits of parameter sharing where we share even the parameters between the encoder and decoder in addition to recurrent stacking of layers.


2020 ◽  
Vol 34 (05) ◽  
pp. 8830-8837
Author(s):  
Xin Sheng ◽  
Linli Xu ◽  
Junliang Guo ◽  
Jingchang Liu ◽  
Ruoyu Zhao ◽  
...  

We propose a novel introspective model for variational neural machine translation (IntroVNMT) in this paper, inspired by the recent successful application of introspective variational autoencoder (IntroVAE) in high quality image synthesis. Different from the vanilla variational NMT model, IntroVNMT is capable of improving itself introspectively by evaluating the quality of the generated target sentences according to the high-level latent variables of the real and generated target sentences. As a consequence of introspective training, the proposed model is able to discriminate between the generated and real sentences of the target language via the latent variables generated by the encoder of the model. In this way, IntroVNMT is able to generate more realistic target sentences in practice. In the meantime, IntroVNMT inherits the advantages of the variational autoencoders (VAEs), and the model training process is more stable than the generative adversarial network (GAN) based models. Experimental results on different translation tasks demonstrate that the proposed model can achieve significant improvements over the vanilla variational NMT model.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Gong-Xu Luo ◽  
Ya-Ting Yang ◽  
Rui Dong ◽  
Yan-Hong Chen ◽  
Wen-Bo Zhang

Neural machine translation (NMT) for low-resource languages has drawn great attention in recent years. In this paper, we propose a joint back-translation and transfer learning method for low-resource languages. It is widely recognized that data augmentation methods and transfer learning methods are both straight forward and effective ways for low-resource problems. However, existing methods, which utilize one of these methods alone, limit the capacity of NMT models for low-resource problems. In order to make full use of the advantages of existing methods and further improve the translation performance of low-resource languages, we propose a new method to perfectly integrate the back-translation method with mainstream transfer learning architectures, which can not only initialize the NMT model by transferring parameters of the pretrained models, but also generate synthetic parallel data by translating large-scale monolingual data of the target side to boost the fluency of translations. We conduct experiments to explore the effectiveness of the joint method by incorporating back-translation into the parent-child and the hierarchical transfer learning architecture. In addition, different preprocessing and training methods are explored to get better performance. Experimental results on Uygur-Chinese and Turkish-English translation demonstrate the superiority of the proposed method over the baselines that use single methods.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1213
Author(s):  
Guanghao Xu ◽  
Youngjoong Ko ◽  
Jungyun Seo

Synthetic data has been shown to be effective in training state-of-the-art neural machine translation (NMT) systems. Because the synthetic data is often generated by back-translating monolingual data from the target language into the source language, it potentially contains a lot of noise—weakly paired sentences or translation errors. In this paper, we propose a novel approach to filter this noise from synthetic data. For each sentence pair of the synthetic data, we compute a semantic similarity score using bilingual word embeddings. By selecting sentence pairs according to these scores, we obtain better synthetic parallel data. Experimental results on the IWSLT 2017 Korean→English translation task show that despite using much less data, our method outperforms the baseline NMT system with back-translation by up to 0.72 and 0.62 Bleu points for tst2016 and tst2017, respectively.


Sign in / Sign up

Export Citation Format

Share Document