cross lingual
Recently Published Documents





2022 ◽  
Vol 40 (3) ◽  
pp. 1-30
Zhiwen Xie ◽  
Runjie Zhu ◽  
Kunsong Zhao ◽  
Jin Liu ◽  
Guangyou Zhou ◽  

Cross-lingual entity alignment has attracted considerable attention in recent years. Past studies using conventional approaches to match entities share the common problem of missing important structural information beyond entities in the modeling process. This allows graph neural network models to step in. Most existing graph neural network approaches model individual knowledge graphs (KGs) separately with a small amount of pre-aligned entities served as anchors to connect different KG embedding spaces. However, this characteristic can cause several major problems, including performance restraint due to the insufficiency of available seed alignments and ignorance of pre-aligned links that are useful in contextual information in-between nodes. In this article, we propose DuGa-DIT, a dual gated graph attention network with dynamic iterative training, to address these problems in a unified model. The DuGa-DIT model captures neighborhood and cross-KG alignment features by using intra-KG attention and cross-KG attention layers. With the dynamic iterative process, we can dynamically update the cross-KG attention score matrices, which enables our model to capture more cross-KG information. We conduct extensive experiments on two benchmark datasets and a case study in cross-lingual personalized search. Our experimental results demonstrate that DuGa-DIT outperforms state-of-the-art methods.

Shu Jiang ◽  
Zuchao Li ◽  
Hai Zhao ◽  
Bao-Liang Lu ◽  
Rui Wang

In recent years, the research on dependency parsing focuses on improving the accuracy of the domain-specific (in-domain) test datasets and has made remarkable progress. However, there are innumerable scenarios in the real world that are not covered by the dataset, namely, the out-of-domain dataset. As a result, parsers that perform well on the in-domain data usually suffer from significant performance degradation on the out-of-domain data. Therefore, to adapt the existing in-domain parsers with high performance to a new domain scenario, cross-domain transfer learning methods are essential to solve the domain problem in parsing. This paper examines two scenarios for cross-domain transfer learning: semi-supervised and unsupervised cross-domain transfer learning. Specifically, we adopt a pre-trained language model BERT for training on the source domain (in-domain) data at the subword level and introduce self-training methods varied from tri-training for these two scenarios. The evaluation results on the NLPCC-2019 shared task and universal dependency parsing task indicate the effectiveness of the adopted approaches on cross-domain transfer learning and show the potential of self-learning to cross-lingual transfer learning.

2022 ◽  
Vol 27 (4) ◽  
pp. 719-728
Jianliang Gao ◽  
Xiangyue Liu ◽  
Yibo Chen ◽  
Fan Xiong

Iqra Muneer ◽  
Rao Muhammad Adeel Nawab

Cross-Lingual Text Reuse Detection (CLTRD) has recently attracted the attention of the research community due to a large amount of digital text readily available for reuse in multiple languages through online digital repositories. In addition, efficient machine translation systems are freely and readily available to translate text from one language into another, which makes it quite easy to reuse text across languages, and consequently difficult to detect it. In the literature, the most prominent and widely used approach for CLTRD is Translation plus Monolingual Analysis (T+MA). To detect CLTR for English-Urdu language pair, T+MA has been used with lexical approaches, namely, N-gram Overlap, Longest Common Subsequence, and Greedy String Tiling. This clearly shows that T+MA has not been thoroughly explored for the English-Urdu language pair. To fulfill this gap, this study presents an in-depth and detailed comparison of 26 approaches that are based on T+MA. These approaches include semantic similarity approaches (semantic tagger based approaches, WordNet-based approaches), probabilistic approach (Kullback-Leibler distance approach), monolingual word embedding-based approaches siamese recurrent architecture, and monolingual sentence transformer-based approaches for English-Urdu language pair. The evaluation was carried out using the CLEU benchmark corpus, both for the binary and the ternary classification tasks. Our extensive experimentation shows that our proposed approach that is a combination of 26 approaches obtained an F 1 score of 0.77 and 0.61 for the binary and ternary classification tasks, respectively, and outperformed the previously reported approaches [ 41 ] ( F 1 = 0.73) for the binary and ( F 1 = 0.55) for the ternary classification tasks) on the CLEU corpus.

Ghazeefa Fatima ◽  
Rao Muhammad Adeel Nawab ◽  
Muhammad Salman Khan ◽  
Ali Saeed

Semantic word similarity is a quantitative measure of how much two words are contextually similar. Evaluation of semantic word similarity models requires a benchmark corpus. However, despite the millions of speakers and the large digital text of the Urdu language on the Internet, there is a lack of benchmark corpus for the Cross-lingual Semantic Word Similarity task for the Urdu language. This article reports our efforts in developing such a corpus. The newly developed corpus is based on the SemEval-2017 task 2 English dataset, and it contains 1,945 cross-lingual English–Urdu word pairs. For each of these pairs of words, semantic similarity scores were assigned by 11 native Urdu speakers. In addition to corpus generation, this article also reports the evaluation results of a baseline approach, namely “Translation Plus Monolingual Analysis” for automated identification of semantic similarity between English–Urdu word pairs. The results showed that the path length similarity measure performs better for the Google and Bing translated words. The newly created corpus and evaluation results are freely available online for further research and development.

Tharindu Ranasinghe ◽  
Marcos Zampieri

Offensive content is pervasive in social media and a reason for concern to companies and government organizations. Several studies have been recently published investigating methods to detect the various forms of such content (e.g., hate speech, cyberbullying, and cyberaggression). The clear majority of these studies deal with English partially because most annotated datasets available contain English data. In this article, we take advantage of available English datasets by applying cross-lingual contextual word embeddings and transfer learning to make predictions in low-resource languages. We project predictions on comparable data in Arabic, Bengali, Danish, Greek, Hindi, Spanish, and Turkish. We report results of 0.8415 F1 macro for Bengali in TRAC-2 shared task [23], 0.8532 F1 macro for Danish and 0.8701 F1 macro for Greek in OffensEval 2020 [58], 0.8568 F1 macro for Hindi in HASOC 2019 shared task [27], and 0.7513 F1 macro for Spanish in in SemEval-2019 Task 5 (HatEval) [7], showing that our approach compares favorably to the best systems submitted to recent shared tasks on these three languages. Additionally, we report competitive performance on Arabic and Turkish using the training and development sets of OffensEval 2020 shared task. The results for all languages confirm the robustness of cross-lingual contextual embeddings and transfer learning for this task.

2022 ◽  
pp. 103983
Zheng Yuan ◽  
Zhengyun Zhao ◽  
Haixia Sun ◽  
Jiao Li ◽  
Fei Wang ◽  

Tarek Saier ◽  
Michael Färber ◽  
Tornike Tsereteli

AbstractCitation information in scholarly data is an important source of insight into the reception of publications and the scholarly discourse. Outcomes of citation analyses and the applicability of citation-based machine learning approaches heavily depend on the completeness of such data. One particular shortcoming of scholarly data nowadays is that non-English publications are often not included in data sets, or that language metadata is not available. Because of this, citations between publications of differing languages (cross-lingual citations) have only been studied to a very limited degree. In this paper, we present an analysis of cross-lingual citations based on over one million English papers, spanning three scientific disciplines and a time span of three decades. Our investigation covers differences between cited languages and disciplines, trends over time, and the usage characteristics as well as impact of cross-lingual citations. Among our findings are an increasing rate of citations to publications written in Chinese, citations being primarily to local non-English languages, and consistency in citation intent between cross- and monolingual citations. To facilitate further research, we make our collected data and source code publicly available.

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3172
Qingran Zhan ◽  
Xiang Xie ◽  
Chenguang Hu ◽  
Juan Zuluaga-Gomez ◽  
Jing Wang ◽  

Phonological-based features (articulatory features, AFs) describe the movements of the vocal organ which are shared across languages. This paper investigates a domain-adversarial neural network (DANN) to extract reliable AFs, and different multi-stream techniques are used for cross-lingual speech recognition. First, a novel universal phonological attributes definition is proposed for Mandarin, English, German and French. Then a DANN-based AFs detector is trained using source languages (English, German and French). When doing the cross-lingual speech recognition, the AFs detectors are used to transfer the phonological knowledge from source languages (English, German and French) to the target language (Mandarin). Two multi-stream approaches are introduced to fuse the acoustic features and cross-lingual AFs. In addition, the monolingual AFs system (i.e., the AFs are directly extracted from the target language) is also investigated. Experiments show that the performance of the AFs detector can be improved by using convolutional neural networks (CNN) with a domain-adversarial learning method. The multi-head attention (MHA) based multi-stream can reach the best performance compared to the baseline, cross-lingual adaptation approach, and other approaches. More specifically, the MHA-mode with cross-lingual AFs yields significant improvements over monolingual AFs with the restriction of training data size and, which can be easily extended to other low-resource languages.

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8313
Łukasz Lepak ◽  
Kacper Radzikowski ◽  
Robert Nowak ◽  
Karol J. Piczak

Models for keyword spotting in continuous recordings can significantly improve the experience of navigating vast libraries of audio recordings. In this paper, we describe the development of such a keyword spotting system detecting regions of interest in Polish call centre conversations. Unfortunately, in spite of recent advancements in automatic speech recognition systems, human-level transcription accuracy reported on English benchmarks does not reflect the performance achievable in low-resource languages, such as Polish. Therefore, in this work, we shift our focus from complete speech-to-text conversion to acoustic similarity matching in the hope of reducing the demand for data annotation. As our primary approach, we evaluate Siamese and prototypical neural networks trained on several datasets of English and Polish recordings. While we obtain usable results in English, our models’ performance remains unsatisfactory when applied to Polish speech, both after mono- and cross-lingual training. This performance gap shows that generalisation with limited training resources is a significant obstacle for actual deployments in low-resource languages. As a potential countermeasure, we implement a detector using audio embeddings generated with a generic pre-trained model provided by Google. It has a much more favourable profile when applied in a cross-lingual setup to detect Polish audio patterns. Nevertheless, despite these promising results, its performance on out-of-distribution data are still far from stellar. It would indicate that, in spite of the richness of internal representations created by more generic models, such speech embeddings are not entirely malleable to cross-language transfer.

Sign in / Sign up

Export Citation Format

Share Document