scholarly journals On the Subexponential-Time Complexity of CSP

2015 ◽  
Vol 52 ◽  
pp. 203-234 ◽  
Author(s):  
Ronald De Haan ◽  
Iyad Kanj ◽  
Stefan Szeider

Not all NP-complete problems share the same practical hardness with respect to exact computation. Whereas some NP-complete problems are amenable to efficient computational methods, others are yet to show any such sign. It becomes a major challenge to develop a theoretical framework that is more fine-grained than the theory of NP-completeness, and that can explain the distinction between the exact complexities of various NP-complete problems. This distinction is highly relevant for constraint satisfaction problems under natural restrictions, where various shades of hardness can be observed in practice. Acknowledging the NP-hardness of such problems, one has to look beyond polynomial time computation. The theory of subexponential-time complexity provides such a framework, and has been enjoying increasing popularity in complexity theory. An instance of the constraint satisfaction problem with n variables over a domain of d values can be solved by brute-force in dn steps (omitting a polynomial factor). In this paper we study the existence of subexponential-time algorithms, that is, algorithms running in do(n) steps, for various natural restrictions of the constraint satisfaction problem. We consider both the constraint satisfaction problem in which all the constraints are given extensionally as tables, and that in which all the constraints are given intensionally in the form of global constraints. We provide tight characterizations of the subexponential-time complexity of the aforementioned problems with respect to several natural structural parameters, which allows us to draw a detailed landscape of the subexponential-time complexity of the constraint satisfaction problem. Our analysis provides fundamental results indicating whether and when one can significantly improve on the brute-force search approach for solving the constraint satisfaction problem.

2021 ◽  
Vol 13 (1) ◽  
pp. 1-32
Author(s):  
Peter Jonsson ◽  
Victor Lagerkvist ◽  
Biman Roy

We study the constraint satisfaction problem (CSP) parameterized by a constraint language Γ (CSPΓ) and how the choice of Γ affects its worst-case time complexity. Under the exponential-time hypothesis (ETH), we rule out the existence of subexponential algorithms for finite-domain NP-complete CSPΓ problems. This extends to certain infinite-domain CSPs and structurally restricted problems. For CSPs with finite domain D and where all unary relations are available, we identify a relation S D such that the time complexity of the NP-complete problem CSP({ S D }) is a lower bound for all NP-complete CSPs of this kind. We also prove that the time complexity of CSP({ S D }) strictly decreases when |D| increases (unless the ETH is false) and provide stronger complexity results in the special case when |D|=3.


Author(s):  
Lenka Zdeborová

Statistical physics of hard optimization problemsOptimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial (NP)-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this article is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named "locked" constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability.


Author(s):  
Marlene Arangú ◽  
Miguel Salido

A fine-grained arc-consistency algorithm for non-normalized constraint satisfaction problems Constraint programming is a powerful software technology for solving numerous real-life problems. Many of these problems can be modeled as Constraint Satisfaction Problems (CSPs) and solved using constraint programming techniques. However, solving a CSP is NP-complete so filtering techniques to reduce the search space are still necessary. Arc-consistency algorithms are widely used to prune the search space. The concept of arc-consistency is bidirectional, i.e., it must be ensured in both directions of the constraint (direct and inverse constraints). Two of the most well-known and frequently used arc-consistency algorithms for filtering CSPs are AC3 and AC4. These algorithms repeatedly carry out revisions and require support checks for identifying and deleting all unsupported values from the domains. Nevertheless, many revisions are ineffective, i.e., they cannot delete any value and consume a lot of checks and time. In this paper, we present AC4-OP, an optimized version of AC4 that manages the binary and non-normalized constraints in only one direction, storing the inverse founded supports for their later evaluation. Thus, it reduces the propagation phase avoiding unnecessary or ineffective checking. The use of AC4-OP reduces the number of constraint checks by 50% while pruning the same search space as AC4. The evaluation section shows the improvement of AC4-OP over AC4, AC6 and AC7 in random and non-normalized instances.


Author(s):  
Robert Ganian ◽  
Andre Schidler ◽  
Manuel Sorge ◽  
Stefan Szeider

Treewidth and hypertree width have proven to be highly successful structural parameters in the context of the Constraint Satisfaction Problem (CSP). When either of these parameters is bounded by a constant, then CSP becomes solvable in polynomial time. However, here the order of the polynomial in the running time depends on the width, and this is known to be unavoidable; therefore, the problem is not fixed-parameter tractable parameterized by either of these width measures. Here we introduce an enhancement of tree and hypertree width through a novel notion of thresholds, allowing the associated decompositions to take into account information about the computational costs associated with solving the given CSP instance. Aside from introducing these notions, we obtain efficient theoretical as well as empirical algorithms for computing threshold treewidth and hypertree width and show that these parameters give rise to fixed-parameter algorithms for CSP as well as other, more general problems. We complement our theoretical results with experimental evaluations in terms of heuristics as well as exact methods based on SAT/SMT encodings.


2013 ◽  
Vol 23 (05) ◽  
pp. 1151-1174 ◽  
Author(s):  
LIBOR BARTO ◽  
JAKUB BULÍN

For a digraph ℍ, the Constraint Satisfaction Problem with template ℍ, or CSP(ℍ), is the problem of deciding whether a given input digraph 𝔾 admits a homomorphism to ℍ. The CSP dichotomy conjecture of Feder and Vardi states that for any digraph ℍ, CSP(ℍ) is either in P or NP-complete. Barto, Kozik, Maróti and Niven (Proc. Amer. Math. Soc.137 (2009) 2921–2934) confirmed the conjecture for a class of oriented trees called special triads. We generalize this result, establishing the dichotomy for a class of oriented trees which we call special polyads. We prove that every tractable special polyad has bounded width and provide the description of special polyads of width 1. We also construct a tractable special polyad which neither has width 1 nor admits any near-unanimity polymorphism.


2014 ◽  
Vol 21 (04) ◽  
pp. 1450011
Author(s):  
Hideaki Ito ◽  
Saburou Iida

In a quantum computation, some algorithms use oracles (black boxes) for abstract computational objects. This paper presents an example for organizing Grover's quantum oracle by synthesizing several unitary gates such as CNOT gates, Toffoli gates, and Hadamard gates. As an example, we show a concrete quantum circuit for the knapsack problem, which belongs to the class of NP-complete problems. The time complexity of an oracle for the knapsack problem is estimated to be O(n2), where n is the number of variables. And the same order is obtained for space complexity.


2021 ◽  
Author(s):  
Amir El-Aooiti

Although Constraint Satisfaction Problems (CSPs) are generally known to be NP-complete, placing restrictions on the constraint template can yield tractable subclasses. By studying the operations in the polymorphism of the constraint language, we can construct algorithms which solve our CSP in polynomial time. Previous results for CSPs with Mal’tsev [7] and generalized majority-minority operations [10] were improved to include CSPs with k-edge operations [15]. We present an alternative method to solve k-edge CSPs by utilizing Boolean trees placing the problem in the class NC2 . We do this by arranging the logical formulas describing the CSP into a Boolean tree where each leaf represents a constraint in the CSP. We take the conjunction of the constraint formulas yielding partial solutions at every step until we are left with a solution set at the root of the tree which satisfies all of the constraints.


2012 ◽  
Vol 43 ◽  
pp. 257-292 ◽  
Author(s):  
J.H.M. Lee ◽  
K. L. Leung

Many combinatorial problems deal with preferences and violations, the goal of which is to find solutions with the minimum cost. Weighted constraint satisfaction is a framework for modeling such problems, which consists of a set of cost functions to measure the degree of violation or preferences of different combinations of variable assignments. Typical solution methods for weighted constraint satisfaction problems (WCSPs) are based on branch-and-bound search, which are made practical through the use of powerful consistency techniques such as AC*, FDAC*, EDAC* to deduce hidden cost information and value pruning during search. These techniques, however, are designed to be efficient only on binary and ternary cost functions which are represented in table form. In tackling many real-life problems, high arity (or global) cost functions are required. We investigate efficient representation scheme and algorithms to bring the benefits of the consistency techniques to also high arity cost functions, which are often derived from hard global constraints from classical constraint satisfaction. The literature suggests some global cost functions can be represented as flow networks, and the minimum cost flow algorithm can be used to compute the minimum costs of such networks in polynomial time. We show that naive adoption of this flow-based algorithmic method for global cost functions can result in a stronger form of null-inverse consistency. We further show how the method can be modified to handle cost projections and extensions to maintain generalized versions of AC* and FDAC* for cost functions with more than two variables. Similar generalization for the stronger EDAC* is less straightforward. We reveal the oscillation problem when enforcing EDAC* on cost functions sharing more than one variable. To avoid oscillation, we propose a weak version of EDAC* and generalize it to weak EDGAC* for non-binary cost functions. Using various benchmarks involving the soft variants of hard global constraints ALLDIFFERENT, GCC, SAME, and REGULAR, empirical results demonstrate that our proposal gives improvements of up to an order of magnitude when compared with the traditional constraint optimization approach, both in terms of time and pruning.


2021 ◽  
Author(s):  
Muhanda Stella Mbaka Muzalal

Constraint satisfaction problems present a general framework for studying a large class of algorithmic problems such as satisfaction of Boolean formulas, solving systems of equations over finite fields, graph colourings, as well as various applied problems in artificial intelligence (scheduling, allocation of cell phone frequencies, among others.) CSP (Constraint Satisfaction Problems) bring together graph theory, complexity theory and universal algebra. It is a well known result, due to Feder and Vardi, that any constraint satisfaction problem over a finite relational structure can be reduced to the homomorphism problem for a finite oriented graph. Until recently, it was not known whether this reduction preserves the type of the algorithm which solves the original constraint satisfaction problem, so that the same algorithm solves the corresponding digraph homomorphism problem. We look at how a recent construction due to Bulin, Deli´c, Jackson, and Niven can be used to show that the polynomial solvability of a constraint satisfaction problem using Datalog, a programming language which is a weaker version of Prolog, translates from arbitrary relational structures to digraphs.


Sign in / Sign up

Export Citation Format

Share Document