Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence
Latest Publications


TOTAL DOCUMENTS

779
(FIVE YEARS 779)

H-INDEX

3
(FIVE YEARS 3)

Published By International Joint Conferences On Artificial Intelligence Organization

9780999241165

Author(s):  
Lavindra de Silva ◽  
Felipe Meneguzzi ◽  
Brian Logan

The BDI model forms the basis of much of the research on symbolic models of agency and agent-oriented software engineering. While many variants of the basic BDI model have been proposed in the literature, there has been no systematic review of research on BDI agent architectures in over 10 years. In this paper, we survey the main approaches to each component of the BDI architecture, how these have been realised in agent programming languages, and discuss the trade-offs inherent in each approach.


Author(s):  
Luís C. Lamb ◽  
Artur d’Avila Garcez ◽  
Marco Gori ◽  
Marcelo O.R. Prates ◽  
Pedro H.C. Avelar ◽  
...  

Neural-symbolic computing has now become the subject of interest of both academic and industry research laboratories. Graph Neural Networks (GNNs) have been widely used in relational and symbolic domains, with widespread application of GNNs in combinatorial optimization, constraint satisfaction, relational reasoning and other scientific domains. The need for improved explainability, interpretability and trust of AI systems in general demands principled methodologies, as suggested by neural-symbolic computing. In this paper, we review the state-of-the-art on the use of GNNs as a model of neural-symbolic computing. This includes the application of GNNs in several domains as well as their relationship to current developments in neural-symbolic computing.


Author(s):  
Yinan Zhang ◽  
Yong Liu ◽  
Peng Han ◽  
Chunyan Miao ◽  
Lizhen Cui ◽  
...  

Cross-domain recommendation methods usually transfer knowledge across different domains implicitly, by sharing model parameters or learning parameter mappings in the latent space. Differing from previous studies, this paper focuses on learning explicit mapping between a user's behaviors (i.e. interaction itemsets) in different domains during the same temporal period. In this paper, we propose a novel deep cross-domain recommendation model, called Cycle Generation Networks (CGN). Specifically, CGN employs two generators to construct the dual-direction personalized itemset mapping between a user's behaviors in two different domains over time. The generators are learned by optimizing the distance between the generated itemset and the real interacted itemset, as well as the cycle-consistent loss defined based on the dual-direction generation procedure. We have performed extensive experiments on real datasets to demonstrate the effectiveness of the proposed model, comparing with existing single-domain and cross-domain recommendation methods.


Author(s):  
Nathanaël Fijalkow ◽  
Bastien Maubert ◽  
Aniello Murano ◽  
Moshe Vardi

Prompt-LTL extends Linear Temporal Logic with a bounded version of the ``eventually'' operator to express temporal requirements such as bounding waiting times. We study assume-guarantee synthesis for prompt-LTL: the goal is to construct a system such that for all environments satisfying a first prompt-LTL formula (the assumption) the system composed with this environment satisfies a second prompt-LTL formula (the guarantee). This problem has been open for a decade. We construct an algorithm for solving it and show that, like classical LTL synthesis, it is 2-EXPTIME-complete.


Author(s):  
Yuying Xing ◽  
Guoxian Yu ◽  
Jun Wang ◽  
Carlotta Domeniconi ◽  
Xiangliang Zhang

Multi-view, Multi-instance, and Multi-label Learning (M3L) can model complex objects (bags), which are represented with different feature views, made of diverse instances, and annotated with discrete non-exclusive labels. Existing M3L approaches assume a complete correspondence between bags and views, and also assume a complete annotation for training. However, in practice, neither the correspondence between bags, nor the bags' annotations are complete. To tackle such a weakly-supervised M3L task, a solution called WSM3L is introduced. WSM3L adapts multimodal dictionary learning to learn a shared dictionary (representational space) across views and individual encoding vectors of bags for each view. The label similarity and feature similarity of encoded bags are jointly used to match bags across views. In addition, it replenishes the annotations of a bag based on the annotations of its neighborhood bags, and introduces a dispatch and aggregation term to dispatch bag-level annotations to instances and to reversely aggregate instance-level annotations to bags. WSM3L unifies these objectives and processes in a joint objective function to predict the instance-level and bag-level annotations in a coordinated fashion, and it further introduces an alternative solution for the objective function optimization. Extensive experimental results show the effectiveness of WSM3L on benchmark datasets.


Author(s):  
Yu Zeng ◽  
Yan Gao ◽  
Jiaqi Guo ◽  
Bei Chen ◽  
Qian Liu ◽  
...  

Neural semantic parsers usually fail to parse long and complicated utterances into nested SQL queries, due to the large search space. In this paper, we propose a novel recursive semantic parsing framework called RECPARSER to generate the nested SQL query layer-by-layer. It decomposes the complicated nested SQL query generation problem into several progressive non-nested SQL query generation problems. Furthermore, we propose a novel Question Decomposer module to explicitly encourage RECPARSER to focus on different components of an utterance when predicting SQL queries of different layers. Experiments on the Spider dataset show that our approach is more effective compared to the previous works at predicting the nested SQL queries. In addition, we achieve an overall accuracy that is comparable with state-of-the-art approaches.


Author(s):  
Shaowei Cai ◽  
Wenying Hou ◽  
Yiyuan Wang ◽  
Chuan Luo ◽  
Qingwei Lin

Minimum dominating set (MinDS) is a canonical NP-hard combinatorial optimization problem with applications. For large and hard instances one must resort to heuristic approaches to obtain good solutions within reasonable time. This paper develops an efficient local search algorithm for MinDS, which has two main ideas. The first one is a novel local search framework, while the second is a construction procedure with inference rules. Our algorithm named FastDS is evaluated on 4 standard benchmarks and 3 massive graphs benchmarks. FastDS obtains the best performance for almost all benchmarks, and obtains better solutions than state-of-the-art algorithms on massive graphs.


Author(s):  
Hengyi Cai ◽  
Hongshen Chen ◽  
Yonghao Song ◽  
Xiaofang Zhao ◽  
Dawei Yin

Humans benefit from previous experiences when taking actions. Similarly, related examples from the training data also provide exemplary information for neural dialogue models when responding to a given input message. However, effectively fusing such exemplary information into dialogue generation is non-trivial: useful exemplars are required to be not only literally-similar, but also topic-related with the given context. Noisy exemplars impair the neural dialogue models understanding the conversation topics and even corrupt the response generation. To address the issues, we propose an exemplar guided neural dialogue generation model where exemplar responses are retrieved in terms of both the text similarity and the topic proximity through a two-stage exemplar retrieval model. In the first stage, a small subset of conversations is retrieved from a training set given a dialogue context. These candidate exemplars are then finely ranked regarding the topical proximity to choose the best-matched exemplar response. To further induce the neural dialogue generation model consulting the exemplar response and the conversation topics more faithfully, we introduce a multi-source sampling mechanism to provide the dialogue model with both local exemplary semantics and global topical guidance during decoding. Empirical evaluations on a large-scale conversation dataset show that the proposed approach significantly outperforms the state-of-the-art in terms of both the quantitative metrics and human evaluations.


Author(s):  
Risheng Liu

Numerous tasks at the core of statistics, learning, and vision areas are specific cases of ill-posed inverse problems. Recently, learning-based (e.g., deep) iterative methods have been empirically shown to be useful for these problems. Nevertheless, integrating learnable structures into iterations is still a laborious process, which can only be guided by intuitions or empirical insights. Moreover, there is a lack of rigorous analysis of the convergence behaviors of these reimplemented iterations, and thus the significance of such methods is a little bit vague. We move beyond these limits and propose a theoretically guaranteed optimization learning paradigm, a generic and provable paradigm for nonconvex inverse problems, and develop a series of convergent deep models. Our theoretical analysis reveals that the proposed optimization learning paradigm allows us to generate globally convergent trajectories for learning-based iterative methods. Thanks to the superiority of our framework, we achieve state-of-the-art performance on different real applications.


Author(s):  
Dylan J. Foster ◽  
Vasilis Syrgkanis

We provide excess risk guarantees for statistical learning in a setting where the population risk with respect to which we evaluate a target parameter depends on an unknown parameter that must be estimated from data (a "nuisance parameter"). We analyze a two-stage sample splitting meta-algorithm that takes as input two arbitrary estimation algorithms: one for the target parameter and one for the nuisance parameter. We show that if the population risk satisfies a condition called Neyman orthogonality, the impact of the nuisance estimation error on the excess risk bound achieved by the meta-algorithm is of second order. Our theorem is agnostic to the particular algorithms used for the target and nuisance and only makes an assumption on their individual performance. This enables the use of a plethora of existing results from statistical learning and machine learning literature to give new guarantees for learning with a nuisance component. Moreover, by focusing on excess risk rather than parameter estimation, we can give guarantees under weaker assumptions than in previous works and accommodate the case where the target parameter belongs to a complex nonparametric class. We characterize conditions on the metric entropy such that oracle rates---rates of the same order as if we knew the nuisance parameter---are achieved. We also analyze the rates achieved by specific estimation algorithms such as variance-penalized empirical risk minimization, neural network estimation and sparse high-dimensional linear model estimation. We highlight the applicability of our results in four settings of central importance in the literature: 1) heterogeneous treatment effect estimation, 2) offline policy optimization, 3) domain adaptation, and 4) learning with missing data.


Sign in / Sign up

Export Citation Format

Share Document