Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence
Latest Publications


TOTAL DOCUMENTS

779
(FIVE YEARS 779)

H-INDEX

3
(FIVE YEARS 3)

Published By International Joint Conferences On Artificial Intelligence Organization

9780999241165

Author(s):  
Beatriz San Miguel ◽  
Aisha Naseer ◽  
Hiroya Inakoshi

To improve and ensure trustworthiness and ethics on Artificial Intelligence (AI) systems, several initiatives around the globe are producing principles and recommendations, which are providing to be difficult to translate into technical solutions. A common trait among ethical AI requirements is accountability that aims at ensuring responsibility, auditability, and reduction of negative impact of AI systems. To put accountability into practice, this paper presents the Global-view Accountability Framework (GAF) that considers auditability and redress of conflicting information arising from a context with two or more AI systems which can produce a negative impact. A technical implementation of the framework for automotive and motor insurance is demonstrated, where the focus is on preventing and reporting harm rendered by autonomous vehicles.


Author(s):  
Hen-Hsen Huang

This work presents AutoSurvey, an intelligent system that performs literature survey and generates a summary specific to a research draft. A neural model for information structure analysis is employed for extracting fine-grained information from the abstracts of previous work, and a novel evolutionary multi-source summarization model is proposed for generating the summary of related work. This system is extremely used for both academic and educational purposes.


Author(s):  
Kangzhi Zhao ◽  
Yong Zhang ◽  
Hongzhi Yin ◽  
Jin Wang ◽  
Kai Zheng ◽  
...  

Next Point-of-Interest (POI) recommendation plays an important role in location-based services. State-of-the-art methods learn the POI-level sequential patterns in the user's check-in sequence but ignore the subsequence patterns that often represent the socio-economic activities or coherence of preference of the users. However, it is challenging to integrate the semantic subsequences due to the difficulty to predefine the granularity of the complex but meaningful subsequences. In this paper, we propose Adaptive Sequence Partitioner with Power-law Attention (ASPPA) to automatically identify each semantic subsequence of POIs and discover their sequential patterns. Our model adopts a state-based stacked recurrent neural network to hierarchically learn the latent structures of the user's check-in sequence. We also design a power-law attention mechanism to integrate the domain knowledge in spatial and temporal contexts. Extensive experiments on two real-world datasets demonstrate the effectiveness of our model.


Author(s):  
Miao Zhang ◽  
Huiqi Li ◽  
Shirui Pan ◽  
Taoping Liu ◽  
Steven Su

One-Shot Neural architecture search (NAS) has received wide attentions due to its computational efficiency. Most state-of-the-art One-Shot NAS methods use the validation accuracy based on inheriting weights from the supernet as the stepping stone to search for the best performing architecture, adopting a bilevel optimization pattern with assuming this validation accuracy approximates to the test accuracy after re-training. However, recent works have found that there is no positive correlation between the above validation accuracy and test accuracy for these One-Shot NAS methods, and this reward based sampling for supernet training also entails the rich-get-richer problem. To handle this deceptive problem, this paper presents a new approach, Efficient Novelty-driven Neural Architecture Search, to sample the most abnormal architecture to train the supernet. Specifically, a single-path supernet is adopted, and only the weights of a single architecture sampled by our novelty search are optimized in each step to reduce the memory demand greatly. Experiments demonstrate the effectiveness and efficiency of our novelty search based architecture sampling method.


Author(s):  
Haimei Zhao ◽  
Wei Bian ◽  
Bo Yuan ◽  
Dacheng Tao

Scene perceiving and understanding tasks including depth estimation, visual odometry (VO) and camera relocalization are fundamental for applications such as autonomous driving, robots and drones. Driven by the power of deep learning, significant progress has been achieved on individual tasks but the rich correlations among the three tasks are largely neglected. In previous studies, VO is generally accurate in local scope yet suffers from drift in long distances. By contrast, camera relocalization performs well in the global sense but lacks local precision. We argue that these two tasks should be strategically combined to leverage the complementary advantages, and be further improved by exploiting the 3D geometric information from depth data, which is also beneficial for depth estimation in turn. Therefore, we present a collaborative learning framework, consisting of DepthNet, LocalPoseNet and GlobalPoseNet with a joint optimization loss to estimate depth, VO and camera localization unitedly. Moreover, the Geometric Attention Guidance Model is introduced to exploit the geometric relevance among three branches during learning. Extensive experiments demonstrate that the joint learning scheme is useful for all tasks and our method outperforms current state-of-the-art techniques in depth estimation and camera relocalization with highly competitive performance in VO.


Author(s):  
Lu Bai ◽  
Lixin Cui ◽  
Yue Wang ◽  
Yuhang Jiao ◽  
Edwin R. Hancock

Network representations are powerful tools for the analysis of time-varying financial complex systems consisting of multiple co-evolving financial time series, e.g., stock prices, etc. In this work, we develop a new kernel-based similarity measure between dynamic time-varying financial networks. Our ideas is to transform each original financial network into quantum-based entropy time series and compute the similarity measure based on the classical dynamic time warping framework associated with the entropy time series. The proposed method bridges the gap between graph kernels and the classical dynamic time warping framework for multiple financial time series analysis. Experiments on time-varying networks abstracted from financial time series of New York Stock Exchange (NYSE) database demonstrate that our approach can effectively discriminate the abrupt structural changes in terms of the extreme financial events.


Author(s):  
Shufeng Kong ◽  
Junwen Bai ◽  
Jae Hee Lee ◽  
Di Chen ◽  
Andrew Allyn ◽  
...  

A key problem in computational sustainability is to understand the distribution of species across landscapes over time. This question gives rise to challenging large-scale prediction problems since (i) hundreds of species have to be simultaneously modeled and (ii) the survey data are usually inflated with zeros due to the absence of species for a large number of sites. The problem of tackling both issues simultaneously, which we refer to as the zero-inflated multi-target regression problem, has not been addressed by previous methods in statistics and machine learning. In this paper, we propose a novel deep model for the zero-inflated multi-target regression problem. To this end, we first model the joint distribution of multiple response variables as a multivariate probit model and then couple the positive outcomes with a multivariate log-normal distribution. By penalizing the difference between the two distributions’ covariance matrices, a link between both distributions is established. The whole model is cast as an end-to-end learning framework and we provide an efficient learning algorithm for our model that can be fully implemented on GPUs. We show that our model outperforms the existing state-of-the-art baselines on two challenging real-world species distribution datasets concerning bird and fish populations.


Author(s):  
Ferdinando Fioretto ◽  
Lesia Mitridati ◽  
Pascal Van Hentenryck

This paper introduces a differentially private (DP) mechanism to protect the information exchanged during the coordination of sequential and interdependent markets. This coordination represents a classic Stackelberg game and relies on the exchange of sensitive information between the system agents. The paper is motivated by the observation that the perturbation introduced by traditional DP mechanisms fundamentally changes the underlying optimization problem and even leads to unsatisfiable instances. To remedy such limitation, the paper introduces the Privacy-Preserving Stackelberg Mechanism (PPSM), a framework that enforces the notions of feasibility and fidelity (i.e. near-optimality) of the privacy-preserving information to the original problem objective. PPSM complies with the notion of differential privacy and ensures that the outcomes of the privacy-preserving coordination mechanism are close-to-optimality for each agent. Experimental results on several gas and electricity market benchmarks based on a real case study demonstrate the effectiveness of the proposed approach. A full version of this paper [Fioretto et al., 2020b] contains complete proofs and additional discussion on the motivating application.


Author(s):  
Pavlos Vougiouklis ◽  
Eddy Maddalena ◽  
Jonathon Hare ◽  
Elena Simperl

We investigate the problem of generating natural language summaries from knowledge base triples. Our approach is based on a pointer-generator network, which, in addition to generating regular words from a fixed target vocabulary, is able to verbalise triples in several ways. We undertake an automatic and a human evaluation on single and open-domain summaries generation tasks. Both show that our approach significantly outperforms other data-driven baselines.


Author(s):  
Tanguy Kerdoncuff ◽  
Rémi Emonet ◽  
Marc Sebban

Domain Adaptation aims at benefiting from a labeled dataset drawn from a source distribution to learn a model from examples generated from a different but related target distribution. Creating a domain-invariant representation between the two source and target domains is the most widely technique used. A simple and robust way to perform this task consists in (i) representing the two domains by subspaces described by their respective eigenvectors and (ii) seeking a mapping function which aligns them. In this paper, we propose to use Optimal Transport (OT) and its associated Wassertein distance to perform this alignment. While the idea of using OT in domain adaptation is not new, the original contribution of this paper is two-fold: (i) we derive a generalization bound on the target error involving several Wassertein distances. This prompts us to optimize the ground metric of OT to reduce the target risk; (ii) from this theoretical analysis, we design an algorithm (MLOT) which optimizes a Mahalanobis distance leading to a transportation plan that adapts better. Extensive experiments demonstrate the effectiveness of this original approach.


Sign in / Sign up

Export Citation Format

Share Document