THE CHARACTERISTICS OF LOCAL MECHANICAL ENERGY DISSIPATION IN THE FIN SIDE OF A CIRCULAR TUBE BANK FIN HEAT EXCHANGER

Author(s):  
Mei Su ◽  
Liang-Bi Wang
2008 ◽  
Vol 40 (Supplement) ◽  
pp. S165 ◽  
Author(s):  
Robert Reid ◽  
Matthias Gilgien ◽  
Tron Moger ◽  
Håvard Tjørhom ◽  
Per Haugen ◽  
...  

2013 ◽  
Vol 278-280 ◽  
pp. 629-632
Author(s):  
Li Peng Yuan ◽  
Amur Al Yahmedi ◽  
Li Ming Yuan

Here, we consider the walking gait patterns. And we presented a hybrid model for a passive 2D walker with knees and point feet. The dynamics of this model were fully derived analytically. We have also proposed virtual coupling control laws. The control strategy is formed by taking into account the features of mechanical energy dissipation and restoration. And we also prove some walking rules maybe true.


Author(s):  
Isabelle Beurroies ◽  
Damien Presle ◽  
Julien Rodriguez ◽  
Renaud Denoyel

2019 ◽  
Vol 16 (1) ◽  
pp. 113-119
Author(s):  
Abdul Rauf ◽  
Syed Ismail Ahmad

The energy dissipated properties of normal and decalcified femur, rib and scapula bones of animals ox and camel have been studied by uniform bending technique. A hysteresis curve has been observed between the elevation in bone and load applied. It is observed that the energy dissipated as calculated from the hysteresis loop for rib is more than that of femur and scapula of ox and camel. It has been observed that the dissipation of energy in normal bone is less than that of decalcified bone under the same condition of applied load. The highest energy dissipation was observed in case of rib bone of camel compared to that of any other bone, rib of camel and scapula of ox dissipates maximum energy than femur bones. The study suggests that this technique is simple, elegant and inexpensive besides accurate in determining viscoelastic properties of bone.


2020 ◽  
Vol 125 (20) ◽  
Author(s):  
Huanying Sun ◽  
Liwen Sang ◽  
Haihua Wu ◽  
Zilong Zhang ◽  
Tokuyuki Teraji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document