NUMERICAL PREDICTION FOR TURBULENT FLOW IN POROUS MEDIA MODIFIED κ-ε MODEL

Author(s):  
Nadia Allouache ◽  
Salah Chikh
1965 ◽  
Vol 91 (2) ◽  
pp. 386-392
Author(s):  
Ian Larsen ◽  
Ian C. O'Neill ◽  
Alan K. Parkin ◽  
Joseph B. Franzini

2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Nima F. Jouybari ◽  
Mehdi Maerefat ◽  
T. Staffan Lundström ◽  
Majid E. Nimvari ◽  
Zahra Gholami

The present study deals with the generalization of a macroscopic turbulence model in porous media using a capillary model. The additional source terms associated with the production and dissipation of turbulent kinetic energy due to the presence of solid matrix are calculated using the capillary model. The present model does not require any prior pore scale simulation of turbulent flow in a specific porous geometry in order to close the macroscopic turbulence equations. Validation of the results in packed beds, periodic arrangement of square cylinders, synthetic foams, and longitudinal flows such as pipes, channels, and rod bundles against available data in the literature reveals the ability of the present model in predicting turbulent flow characteristics in different types of porous media. Transition to the fully turbulent regime in porous media and different approaches to treat this phenomenon are also discussed in the present study. Finally, the general model is modified so that it can be applied to lower Reynolds numbers below the range of fully turbulent regime in porous media.


2021 ◽  
Vol 929 ◽  
Author(s):  
Vishal Srikanth ◽  
Ching-Wei Huang ◽  
Timothy S. Su ◽  
Andrey V. Kuznetsov

The focus of this paper is a numerical simulation study of the flow dynamics in a periodic porous medium to analyse the physics of a symmetry-breaking phenomenon, which causes a deviation in the direction of the macroscale flow from that of the applied pressure gradient. The phenomenon is prominent in the range of porosity from 0.43 to 0.72 for circular solid obstacles. It is the result of the flow instabilities formed when the surface forces on the solid obstacles compete with the inertial force of the fluid flow in the turbulent regime. We report the origin and mechanism of the symmetry-breaking phenomenon in periodic porous media. Large-eddy simulation (LES) is used to simulate turbulent flow in a homogeneous porous medium consisting of a periodic, square lattice arrangement of cylindrical solid obstacles. Direct numerical simulation is used to simulate the transient stages during symmetry breakdown and also to validate the LES method. Quantitative and qualitative observations are made from the following approaches: (1) macroscale momentum budget and (2) two- and three-dimensional flow visualization. The phenomenon draws its roots from the amplification of a flow instability that emerges from the vortex shedding process. The symmetry-breaking phenomenon is a pitchfork bifurcation that can exhibit multiple modes depending on the local vortex shedding process. The phenomenon is observed to be sensitive to the porosity, solid obstacle shape and Reynolds number. It is a source of macroscale turbulence anisotropy in porous media for symmetric solid-obstacle geometries. In the macroscale, the principal axis of the Reynolds stress tensor is not aligned with any of the geometric axes of symmetry, nor with the direction of flow. Thus, symmetry breaking in porous media involves unresolved flow physics that should be taken into consideration while modelling flow inhomogeneity in the macroscale.


Sign in / Sign up

Export Citation Format

Share Document