turbulent regime
Recently Published Documents


TOTAL DOCUMENTS

490
(FIVE YEARS 109)

H-INDEX

37
(FIVE YEARS 4)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 146
Author(s):  
Agata Małysiak ◽  
Tomasz Walica ◽  
Tomasz Fronczyk ◽  
Marcin Lemanowicz

In this paper, the influence of hydrodynamic conditions in Kenics static mixer, which acts as a multifunctional reactor, on precipitation kinetics of barium sulfate is investigated. The investigated range of the Reynolds number varied between 500 and 5000, which covered both laminar and turbulent flow regimes. In all experiments, the relative supersaturation was maintained at the constant level (s = 205). The obtained precipitate was collected and used for crystal size distribution (CSD) determination. On that basis, the kinetic parameters of the process were calculated using the mixed suspension mixed product removal (MSMPR) mathematical model of the process. It was found that for the whole investigated range of Reynolds number, the mixing conditions were satisfactory. CSD analysis showed that in the laminar regime, a clear tendency in crystal behavior could not be noticed. However, during the analysis of the turbulent regime, the presence of a critical Reynolds number was noticed. Above this value, there is a change in the flow pattern, which results in a change of kinetic parameters (B, G), as well as manifests in a form of a decrease in the value of mean diameters of crystals. The flow pattern change is caused by the geometry of the reactor’s inserts.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2237
Author(s):  
Jesús Valdés ◽  
Jorge Luis Domínguez-Juárez ◽  
Rufino Nava ◽  
Ángeles Cuán ◽  
Carlos M. Cortés-Romero

In this article, we describe a prototype photoreactor of which the geometrical configuration was obtained by Genetic Algorithms to maximize the residence time of the reactant gases. A gas reaction mixture of CO2:H2O (1:2 molar ratio) was studied from the fluid dynamic point of view. The two main features of this prototype reactor are the conical shape, which enhances the residence time as compared to a cylindrical shape reference reactor, and the inlet heights and position around the main chamber that enables turbulence and mass transfer control. Turbulence intensity, mixing capability, and residence time attributes for the optimized prototype reactor were calculated with Computational Fluid Dynamics (CFD) software and compared with those from a reference reactor. Turbulence intensity near the envisioned catalytic bed was one percentage point higher in the reference than in the optimized prototype reactor. Finally, the homogeneity of the mixture was guaranteed since both types of reactors had a turbulent regime, but for the prototype the CO2 mass fraction was found to be better distributed.


Author(s):  
Julien Cosimi ◽  
Nofel Merbahi ◽  
Frederic Marchal ◽  
Olivier Eichwald ◽  
Mohammed Yousfi

Abstract A low-temperature plasma jet is generated by a dielectric barrier discharge poweredby a pulsed high voltage in helium flow (3 L/min) at atmospheric pressure inpresence of different targets (glass slide or ultra-pure water or a grounded metal plate)positioned perpendicular to the plasma propagation axis. Experimental electricalcharacterizations as discharge current, voltage and powerand optical ones as intensifiedcamera ICCD, Schlieren imaging and emission spectroscopy to follow specific excitedspecies have been achieved. The transition from laminar to turbulent regime wereobserved during the discharge ignition with a larger spreading of the plasma on thesurface target with lower dielectric permittivity and the generation of two dischargesduring each voltage pulse is highlighted during the propagation of the ionization wavethat has shown a variable speed along the plasma axis not depending on the target kind.The evolution of some active species (as OH, O and excited nitrogen and helium) areinvestigated using time resolved mapping of the emissions of radiative excited speciespropagating in ambient air between the plasma jet output andthe target. For a lowrelative permittivity target (glass), the volume ionization wave at its arrival on thetarget spreads on its surface thus behaving as a surface ionization wave. For thehighest relative permittivity (metal), a conductive channel appears between the targetsurface and the plasma jet during the first discharge, followed by a diffuse plasma plumefrom the target surface towards the plasma jet after the impact of the ionization waveon the target. A hybrid behavior is highlighted for the ultra-pure water which leadsto a short spreading of the ionization wave on the target surface, the formation of aconductive channel in ambient air between tube output and target and the formationof a plasma plume on the target surface.


2021 ◽  
Vol 9 (12) ◽  
pp. 1422
Author(s):  
Elena Tobisch ◽  
Alexey Kartashov

The problem of spectral description of the nonlinear capillary waves on the fluid surface is discussed. Usually, three-wave nonlinear interactions are considered as a major factor determined by the energy spectrum of these waves in the kinetic wave turbulent regime. We demonstrate that four-wave interactions should be taken into account. In this case, there are two possible scenarios for the transfer of energy over the wave spectrum: kinetic and dynamic. The first is described by the averaged stochastic interaction of waves using the kinetic equation, while the second is described by dynamic equations written for discrete modes. In this article, we compare the time scales, spectral shapes, and other properties of both energy cascades, allowing them to be identified in an experiment.


2021 ◽  
Vol 931 ◽  
Author(s):  
Yabiao Zhu ◽  
Jiaxing Song ◽  
Fenghui Lin ◽  
Nansheng Liu ◽  
Xiyun Lu ◽  
...  

Direct numerical simulation of spanwise-rotation-driven flow transitions in viscoelastic plane Couette flow from a drag-reduced inertial to a drag-enhanced elasto-inertial turbulent flow state followed by full relaminarization is reported for the first time. Specifically, this novel flow transition begins with a drag-reduced inertial turbulent flow state at a low rotation number $0\leqslant Ro \leqslant 0.1$ , and then transitions to a rotation/polymer-additive-driven drag-enhanced inertial turbulent regime, $0.1\leqslant Ro \leqslant 0.3$ . In turn, the flow transitions to a drag-enhanced elasto-inertial turbulent state, $0.3\leqslant Ro \leqslant 0.9$ , and eventually relaminarizes at $Ro=1$ . In addition, two novel rotation-dependent drag enhancement mechanisms are proposed and substantiated. (1) The formation of large-scale roll cells results in enhanced convective momentum transport along with significant polymer elongation and stress generated in the extensionally dominated flow between adjacent roll cells at $Ro\leqslant 0.2$ . (2) Coriolis-force-generated turbulent vortices cause strong incoherent transport and homogenization of significant polymer stress in the bulk via their vortical circulations at $Ro=0.5 - 0.9$ .


2021 ◽  
Vol 2088 (1) ◽  
pp. 012011
Author(s):  
Ya Ig Kosmatskiy ◽  
M Yu Egorov ◽  
V D Lychakov

Abstract The article is devoted to numerical simulation of heat transfer processes occurring during the flow of a coolant in seamless hot-extrusion pipes with a spiral inner fin surface (TMK-IRS). A description of the numerical modeling technique is given along with the interface of the program used to create different types of internal fins. Thermohydraulic analysis of finned pipes for transient, turbulent and laminar flow regimes has been carried out. An estimate of the critical Reynolds number characterizing the transition to a turbulent regime, the nature of the transient flow regime in comparison with other classical cases is given.


2021 ◽  
Vol 929 ◽  
Author(s):  
Junhao Ke ◽  
N. Williamson ◽  
S.W. Armfield ◽  
A. Komiya ◽  
S.E. Norris

The present study concerns a temporally evolving turbulent natural convection boundary layer (NCBL) adjacent to an isothermally heated vertical wall, with Prandtl number 0.71. Three-dimensional direct numerical simulations (DNS) are carried out to investigate the turbulent flow up to $\textit {Gr}_\delta =1.21\times 10^8$ , where $\textit {Gr}_\delta$ is the Grashof number based on the boundary layer thickness $\delta$ . In the near-wall region, there exists a constant heat flux layer, similar to previous studies for the spatially developing flows (e.g. George & Capp, Intl J. Heat Mass Transfer, vol. 22, 1979, pp. 813–826). Beyond a wall-normal distance $\delta _i$ , the NCBL can be characterised as a plume-like region. We find that this region is well described by a self-similar integral model with profile coefficients (cf. van Reeuwijk & Craske, J. Fluid Mech., vol. 782, 2015, pp. 333–355) which are $\textit {Gr}_\delta$ -independent after $\textit {Gr}_\delta =10^7$ . In this Grashof number range both the outer plume-like region and the near-wall boundary layer are turbulent, indicating the beginning of the so-called ultimate turbulent regime (Grossmann & Lohse, J. Fluid Mech., vol. 407, 2000, pp. 27–56; Grossmann & Lohse, Phys. Fluids, vol. 23, 2011, 045108). Solutions to the self-similar integral model are analytically obtained by solving ordinary differential equations with profile coefficients empirically obtained from the DNS results. In the present study, we have found the wall heat transfer of the NCBL is directly related to the top-hat scales which characterise the plume-like region. The Nusselt number is found to follow $\textit {Nu}_\delta \propto \textit {Gr}_\delta ^{0.381}$ , slightly higher than the empirical $1/3$ -power-law correlation reported for spatially developing NCBLs at lower $\textit {Gr}_\delta$ , but is shown to be consistent with the ultimate heat transfer regime with a logarithmic correction suggested by Grossmann & Lohse (Phys. Fluids, vol. 23, 2011, 045108). By modelling the near-wall buoyancy force, we show that the wall shear stress would scale with the bulk velocity only at asymptotically large Grashof numbers.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6944
Author(s):  
Tommaso Addabbo ◽  
Ada Fort ◽  
Elia Landi ◽  
Marco Mugnaini ◽  
Lorenzo Parri ◽  
...  

This paper aims to thoroughly investigate the potential of ion current measurements in the context of combustion process monitoring in gas turbines. The study is targeted at characterizing the dynamic behavior of a typical ion-current measurement system based on a spark-plug. Starting from the preliminary study published in a previous work, the authors propose a refined model of the electrode (spark plug), based on the Langmuir probe theory, that incorporates the physical surface effects and proposes an optimized design of the conditioning electronics, which exploits a low frequency AC square wave biasing of the electrodes and allows for compensating some relevant parasitic effects. The authors present experimental results obtained in the laboratory, which allow for the evaluation of the validity of the model and the interpreting of the characteristics of the measurement signal. Finally, measurements carried out in the field on an industrial combustor are presented. The results confirm that the charged chemical species density sensed by the proposed measurement system and related to the mean value of the output signal is an indicator of the ‘average’ combustion process conditions in terms e.g., of air/fuel ratio, whereas the high frequency spectral component of the measured signal can give information related to the turbulent regime and to the presence of pressure pulsations. Results obtained with a prototype system demonstrated an achievable resolution of about 5 Pa on the estimated amplitude, even under small biasing voltage (22.5 V) and an estimated bandwidth of 10 kHz.


2021 ◽  
Vol 929 ◽  
Author(s):  
Vishal Srikanth ◽  
Ching-Wei Huang ◽  
Timothy S. Su ◽  
Andrey V. Kuznetsov

The focus of this paper is a numerical simulation study of the flow dynamics in a periodic porous medium to analyse the physics of a symmetry-breaking phenomenon, which causes a deviation in the direction of the macroscale flow from that of the applied pressure gradient. The phenomenon is prominent in the range of porosity from 0.43 to 0.72 for circular solid obstacles. It is the result of the flow instabilities formed when the surface forces on the solid obstacles compete with the inertial force of the fluid flow in the turbulent regime. We report the origin and mechanism of the symmetry-breaking phenomenon in periodic porous media. Large-eddy simulation (LES) is used to simulate turbulent flow in a homogeneous porous medium consisting of a periodic, square lattice arrangement of cylindrical solid obstacles. Direct numerical simulation is used to simulate the transient stages during symmetry breakdown and also to validate the LES method. Quantitative and qualitative observations are made from the following approaches: (1) macroscale momentum budget and (2) two- and three-dimensional flow visualization. The phenomenon draws its roots from the amplification of a flow instability that emerges from the vortex shedding process. The symmetry-breaking phenomenon is a pitchfork bifurcation that can exhibit multiple modes depending on the local vortex shedding process. The phenomenon is observed to be sensitive to the porosity, solid obstacle shape and Reynolds number. It is a source of macroscale turbulence anisotropy in porous media for symmetric solid-obstacle geometries. In the macroscale, the principal axis of the Reynolds stress tensor is not aligned with any of the geometric axes of symmetry, nor with the direction of flow. Thus, symmetry breaking in porous media involves unresolved flow physics that should be taken into consideration while modelling flow inhomogeneity in the macroscale.


2021 ◽  
Vol 62 (11) ◽  
Author(s):  
Hyungmin Park ◽  
Chang-Hwan Choi ◽  
Chang-Jin Kim

AbstractSuperhydrophobic (SHPo) surfaces have been investigated vigorously since around 2000 due in large part to their unique potential for hydrodynamic frictional drag reduction without any energy or material input. The mechanisms and key factors affecting SHPo drag reduction have become relatively well understood for laminar flows by around 2010, as has been reviewed before [Lee et al. Exp Fluids 57:176 (2016)], but the progress for turbulent flows has been rather tortuous. While improved flow tests made positive SHPo drag reduction in fully turbulent flows more regular since around 2010, such a success in a natural, open water environment was reported only in 2020 [Xu et al. Phys Rev Appl 13:034056 (2020b)]. In this article, we review studies from the literature about turbulent flows over SHPo surfaces, with a focus on experimental studies. We summarize the key knowledge obtained, including the drag-reduction mechanism in the turbulent regime, the effect of the surface roughness morphology, and the fate and role of the plastron. This review is aimed to help guide the design and application of SHPo surfaces for drag reduction in the large-scale turbulent flows of field conditions. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document