A General Analytical Approach for Simulation of Pollutant Dispersion in the Atmospheric Boundary Layer

Author(s):  
D. Buske ◽  
Tiziano Tirabassi ◽  
Marco T. Vilhena ◽  
R. S. Quadros
2013 ◽  
Vol 141 (12) ◽  
pp. 4507-4514
Author(s):  
V. S. Komarov ◽  
A. V. Lavrinenko ◽  
N. Ya. Lomakina ◽  
S. N. Il’in

Abstract A two-dimensional, dynamic-stochastic model presented in this study is used for short-term forecasting of vertical profiles of air temperature and wind velocity orthogonal components in the atmospheric boundary layer (ABL). The technique of using a two-dimensional dynamic-stochastic model involves preliminary estimation of its coefficients using the Kalman filter (KF) algorithm and observations at only one measuring station. The results obtained can be useful for aviation meteorology, mobile meteorological systems deployed in regions uncovered or rarely covered by meteorological observations, and devices with limited computational resources. In addition, they can be useful for wind-power and pollutant dispersion applications. Two cases of experiments with real observations using a radiometer and sodar (Doppler radar) deployed in the region of Tomsk, Russia, and data of more frequent (4 times a day) radiosonde observations in the region of Omsk (station 28698) are examined. The forecast period of numerical weather prediction (NWP) for all cases considered in this study ranged from 0.5 to 6 h. The results obtained demonstrate higher forecast quality in comparison with the persistence forecast.


2009 ◽  
pp. 179-202
Author(s):  
Davidson Martins Moreira ◽  
Marco Túllio M. B. de Vilhena ◽  
Daniela Buske

Sign in / Sign up

Export Citation Format

Share Document