weather prediction
Recently Published Documents


TOTAL DOCUMENTS

4394
(FIVE YEARS 1562)

H-INDEX

105
(FIVE YEARS 15)

2022 ◽  
Vol 15 (1) ◽  
pp. 291-313
Author(s):  
Prabhakar Shrestha ◽  
Jana Mendrok ◽  
Velibor Pejcic ◽  
Silke Trömel ◽  
Ulrich Blahak ◽  
...  

Abstract. Sensitivity experiments with a numerical weather prediction (NWP) model and polarimetric radar forward operator (FO) are conducted for a long-duration stratiform event over northwestern Germany to evaluate uncertainties in the partitioning of the ice water content and assumptions of hydrometeor scattering properties in the NWP model and FO, respectively. Polarimetric observations from X-band radar and retrievals of hydrometeor classifications are used for comparison with the multiple experiments in radar and model space. Modifying the critical diameter of particles for ice-to-snow conversion by aggregation (Dice) and the threshold temperature responsible for graupel production by riming (Tgr), was found to improve the synthetic polarimetric moments and simulated hydrometeor population, while keeping the difference in surface precipitation statistically insignificant at model resolvable grid scales. However, the model still exhibited a low bias (lower magnitude than observation) in simulated polarimetric moments at lower levels above the melting layer (−3 to −13 ∘C) where snow was found to dominate. This necessitates further research into the missing microphysical processes in these lower levels (e.g. fragmentation due to ice–ice collisions) and use of more reliable snow-scattering models to draw valid conclusions.


2022 ◽  
Vol 22 (1) ◽  
pp. 577-596
Author(s):  
Susan J. Leadbetter ◽  
Andrew R. Jones ◽  
Matthew C. Hort

Abstract. Atmospheric dispersion model output is frequently used to provide advice to decision makers, for example, about the likely location of volcanic ash erupted from a volcano or the location of deposits of radioactive material released during a nuclear accident. Increasingly, scientists and decision makers are requesting information on the uncertainty of these dispersion model predictions. One source of uncertainty is in the meteorology used to drive the dispersion model, and in this study ensemble meteorology from the Met Office ensemble prediction system is used to provide meteorological uncertainty to dispersion model predictions. Two hypothetical scenarios, one volcanological and one radiological, are repeated every 12 h over a period of 4 months. The scenarios are simulated using ensemble meteorology and deterministic forecast meteorology and compared to output from simulations using analysis meteorology using the Brier skill score. Adopting the practice commonly used in evaluating numerical weather prediction (NWP) models where observations are sparse or non-existent, we consider output from simulations using analysis NWP data to be truth. The results show that on average the ensemble simulations perform better than the deterministic simulations, although not all individual ensemble simulations outperform their deterministic counterpart. The results also show that greater skill scores are achieved by the ensemble simulation for later time steps rather than earlier time steps. In addition there is a greater increase in skill score over time for deposition than for air concentration. For the volcanic ash scenarios it is shown that the performance of the ensemble at one flight level can be different to that at a different flight level; e.g. a negative skill score might be obtained for FL350-550 and a positive skill score for FL200-350. This study does not take into account any source term uncertainty, but it does take the first steps towards demonstrating the value of ensemble dispersion model predictions.


2022 ◽  
Vol 14 (2) ◽  
pp. 362
Author(s):  
Amir Allahvirdi-Zadeh ◽  
Joseph Awange ◽  
Ahmed El-Mowafy ◽  
Tong Ding ◽  
Kan Wang

Global Navigation Satellite Systems’ radio occultation (GNSS-RO) provides the upper troposphere-lower stratosphere (UTLS) vertical atmospheric profiles that are complementing radiosonde and reanalysis data. Such data are employed in the numerical weather prediction (NWP) models used to forecast global weather as well as in climate change studies. Typically, GNSS-RO operates by remotely sensing the bending angles of an occulting GNSS signal measured by larger low Earth orbit (LEO) satellites. However, these satellites are faced with complexities in their design and costs. CubeSats, on the other hand, are emerging small and cheap satellites; the low prices of building them and the advancements in their components make them favorable for the GNSS-RO. In order to be compatible with GNSS-RO requirements, the clocks of the onboard receivers that are estimated through the precise orbit determination (POD) should have short-term stabilities. This is essential to correctly time tag the excess phase observations used in the derivation of the GNSS-RO UTLS atmospheric profiles. In this study, the stabilities of estimated clocks of a set of CubeSats launched for GNSS-RO in the Spire Global constellation are rigorously analysed and evaluated in comparison to the ultra-stable oscillators (USOs) onboard the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-2) satellites. Methods for improving their clock stabilities are proposed and tested. The results (i) show improvement of the estimated clocks at the level of several microseconds, which increases their short-term stabilities, (ii) indicate that the quality of the frequency oscillator plays a dominant role in CubeSats’ clock instabilities, and (iii) show that CubeSats’ derived UTLS (i.e., tropopause) atmospheric profiles are comparable to those of COSMIC-2 products and in situ radiosonde observations, which provided external validation products. Different comparisons confirm that CubeSats, even those with unstable onboard clocks, provide high-quality RO profiles, comparable to those of COSMIC-2. The proposed remedies in POD and the advancements of the COTS components, such as chip-scale atomic clocks and better onboard processing units, also present a brighter future for real-time applications that require precise orbits and stable clocks.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 127
Author(s):  
Brian P. Reen ◽  
Huaqing Cai ◽  
Robert E. Dumais ◽  
Yuanfu Xie ◽  
Steve Albers ◽  
...  

The combination of techniques that incorporate observational data may improve numerical weather prediction forecasts; thus, in this study, the methodology and potential value of one such combination were investigated. A series of experiments on a single case day was used to explore a 3DVAR-based technique (the variational version of the Local Analysis and Prediction System; vLAPS) in combination with Newtonian relaxation (observation and analysis nudging) for simulating moist convection in the Advanced Research version of the Weather Research and Forecasting model. Experiments were carried out with various combinations of vLAPS and nudging for a series of forecast start times. A limited subjective analysis of reflectivity suggested all experiments generally performed similarly in reproducing the overall convective structures. Objective verification indicated that applying vLAPS analyses without nudging performs best during the 0–2 h forecast in terms of placement of moist convection but worst in the 3–5 h forecast and quickly develops the most substantial overforecast bias. The analyses used for analysis nudging were at much finer temporal and spatial scales than usually used in pre-forecast analysis nudging, and the results suggest that further research is needed on how to best apply analysis nudging of analyses at these scales.


2022 ◽  
Author(s):  
Rachel Wai-Ying Wu ◽  
Zheng Wu ◽  
Daniela I. V. Domeisen

Abstract. Extreme stratospheric events such as sudden stratospheric warming and strong vortex events associated with an anomalously weak or strong polar vortex can have downward impacts on surface weather that can last for several weeks to months. Hence, successful predictions of these stratospheric events would be beneficial for extended range weather prediction. However, the predictability limit of extreme stratospheric events is most often limited to around 2 weeks or less. The predictability also strongly differs between events, and between event types. The reasons for the observed differences in the predictability, however, are not resolved. To better understand the predictability differences between events, we expand the definitions of extreme stratospheric events to wind deceleration and acceleration events, and conduct a systematic comparison of predictability between event types in the European Centre for Medium-Range Weather Forecasts (ECMWF) prediction system for the sub-seasonal predictions. We find that wind deceleration and acceleration events follow the same predictability behaviour, that is, events of stronger magnitude are less predictable in a close to linear relationship, to the same extent for both types of events. There are however deviations from this linear behaviour for very extreme events. The difficulties of the prediction system in predicting extremely strong anomalies can be traced to a poor predictability of extreme wave activity pulses in the lower stratosphere, which impacts the prediction of deceleration events, and interestingly, also acceleration events. Improvements in the understanding of the wave amplification that is associated with extremely strong wave activity pulses and accurately representing these processes in the model is expected to enhance the predictability of stratospheric extreme events and, by extension, their impacts on surface weather and climate.


2022 ◽  
Vol 22 (1) ◽  
pp. 319-333
Author(s):  
Ian Boutle ◽  
Wayne Angevine ◽  
Jian-Wen Bao ◽  
Thierry Bergot ◽  
Ritthik Bhattacharya ◽  
...  

Abstract. An intercomparison between 10 single-column (SCM) and 5 large-eddy simulation (LES) models is presented for a radiation fog case study inspired by the Local and Non-local Fog Experiment (LANFEX) field campaign. Seven of the SCMs represent single-column equivalents of operational numerical weather prediction (NWP) models, whilst three are research-grade SCMs designed for fog simulation, and the LESs are designed to reproduce in the best manner currently possible the underlying physical processes governing fog formation. The LES model results are of variable quality and do not provide a consistent baseline against which to compare the NWP models, particularly under high aerosol or cloud droplet number concentration (CDNC) conditions. The main SCM bias appears to be toward the overdevelopment of fog, i.e. fog which is too thick, although the inter-model variability is large. In reality there is a subtle balance between water lost to the surface and water condensed into fog, and the ability of a model to accurately simulate this process strongly determines the quality of its forecast. Some NWP SCMs do not represent fundamental components of this process (e.g. cloud droplet sedimentation) and therefore are naturally hampered in their ability to deliver accurate simulations. Finally, we show that modelled fog development is as sensitive to the shape of the cloud droplet size distribution, a rarely studied or modified part of the microphysical parameterisation, as it is to the underlying aerosol or CDNC.


Sign in / Sign up

Export Citation Format

Share Document