scholarly journals Order Reduction for Large-Scale Finite Element Models: A Systems Perspective

Author(s):  
William Gressick ◽  
John T. Wen ◽  
Jacob Fish
Author(s):  
Yener N. Yeni ◽  
Do-Gyoon Kim ◽  
Roger R. Zauel ◽  
Evan M. Johnson ◽  
Dianna D. Cody

Vertebral fractures are among the most common and debilitating fractures. Structural organization of cancellous and cortical bone in a vertebra and their local properties are important factors that determine the strength of a vertebra. Linear finite element models utilizing Quantitative Computed Tomography (QCT) images have proven useful for predicting vertebral strength and are potentially useful in predicting risk of fracture in a clinical setting [1]. However, the amount of architectural detail in these models is not sufficient for studying trabecular stress and strains, and their relationship with the microscopic structure, which is important for understanding the mechanisms behind vertebral fragility.


1996 ◽  
Author(s):  
Francois Hemez ◽  
Charbel Farhat ◽  
Emmanuele Decaux ◽  
Jacques Duysens ◽  
Pascal L

2009 ◽  
Vol 45 (3) ◽  
pp. 1108-1111 ◽  
Author(s):  
A. Schultschik ◽  
O. Farle ◽  
R. Dyczij-Edlinger

2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Bian Xiangjuan ◽  
Youping Gong ◽  
Chen Guojin ◽  
Lv Yunpeng

Modeling and simulation of MEMS devices is a very complex tasks which involve the electrical, mechanical, fluidic, and thermal domains, and there are still some uncertainties that need to be accounted for during the robust design of MEMS actuators caused by uncertain material and/or geometric parameters. According to these problems, we put forward stochastic model order reduction method under random input conditions to facilitate fast time and frequency domain analyses; the method makes use of polynomial chaos expansions in terms of the random input variables for the matrices of a finite element model of the system and then uses its transformation matrix to reduce the model; the method is independent of the MOR algorithm, so it is seamlessly compatible with MOR method used in popular finite element solvers. The simulation results verify the method is effective in large scale MEMS design process.


Sign in / Sign up

Export Citation Format

Share Document