An Adaptive Multi-Point Fast Frequency Sweep for Large-Scale Finite Element Models

2009 ◽  
Vol 45 (3) ◽  
pp. 1108-1111 ◽  
Author(s):  
A. Schultschik ◽  
O. Farle ◽  
R. Dyczij-Edlinger
Author(s):  
Yener N. Yeni ◽  
Do-Gyoon Kim ◽  
Roger R. Zauel ◽  
Evan M. Johnson ◽  
Dianna D. Cody

Vertebral fractures are among the most common and debilitating fractures. Structural organization of cancellous and cortical bone in a vertebra and their local properties are important factors that determine the strength of a vertebra. Linear finite element models utilizing Quantitative Computed Tomography (QCT) images have proven useful for predicting vertebral strength and are potentially useful in predicting risk of fracture in a clinical setting [1]. However, the amount of architectural detail in these models is not sufficient for studying trabecular stress and strains, and their relationship with the microscopic structure, which is important for understanding the mechanisms behind vertebral fragility.


1996 ◽  
Author(s):  
Francois Hemez ◽  
Charbel Farhat ◽  
Emmanuele Decaux ◽  
Jacques Duysens ◽  
Pascal L

2003 ◽  
Vol 125 (4) ◽  
pp. 623-631 ◽  
Author(s):  
E. P. Petrov ◽  
D. J. Ewins

The problem of determining the worst mistuning patterns is formulated and solved as an optimization problem. Maximum resonant amplitudes searched across the many nodes of a large-scale finite element model of a mistuned bladed disk and across all the excitation frequencies in a given range are combined into an objective function. Individual blade mistuning is controlled by varying design parameters, whose variation range is constrained by manufacture tolerances. Detailed realistic finite element models, which have so far only been used for analyzing tuned bladed disks, are used for calculation of the forced resonant response of mistuned assemblies and for determination of its sensitivity coefficients with respect to mistuning variation. Results of the optimum search of mistuning patterns for some practical bladed disks are analyzed and reveal higher worst cases than those found in previous studies.


Author(s):  
E. P. Petrov ◽  
D. J. Ewins

In the paper, the problem of determining of the worst mistuning patterns is formulated and solved as an optimization problem. Maximum resonant amplitudes searched across the many nodes of a large-scale finite element model of a mistuned bladed disc and across all the excitation frequencies in a given range are combined into an objective function. Individual blade mistuning is controlled by varying design parameters, whose variation range is constrained by manufacture tolerances. Detailed realistic finite element models, which have so far only been used for analysing tuned bladed discs, are used for calculation of the forced resonant response of mistuned assemblies and for determination of its sensitivity coefficients with respect to mistuning variation. Results of the optimum search of mistuning patterns for some practical bladed discs are analysed and reveal higher worst cases than those found in previous studies.


PAMM ◽  
2014 ◽  
Vol 14 (1) ◽  
pp. 41-42 ◽  
Author(s):  
Thomas Volzer ◽  
Peter Eberhard

Sign in / Sign up

Export Citation Format

Share Document